K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi độ dài 3 cạnh lần lượt là a,b,c

Theo đề, ta có: 5a=7b và 7b=8c

=>a/7=b/5 và b/8=c/7

=>a/56=b/40=c/35

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{a}{56}=\dfrac{b}{40}=\dfrac{c}{35}=\dfrac{a+b+c}{56+45+35}=\dfrac{31}{136}\)

=>a=217/17cm; b=155/17cm; c=1085/136cm

28 tháng 10 2016

Gọi 3 cạnh của tam giác là a; b; c tương ứng với 3 đường cao là h;k; t

Theo bài cho ta có:

\(\frac{h+k}{5}=\frac{k+t}{7}=\frac{t+h}{8}\).

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{h+k}{5}=\frac{k+t}{7}=\frac{t+h}{8}=\frac{2\left(h+k+t\right)}{5+7+8}=\frac{2\left(h+k+t\right)}{20}\frac{h+k+t}{10}=x\)

\(\Rightarrow\)\(h+k+t=5x\);\(k+t=7x\);\(t+h=8x\)\(h+k+t=10x\)

\(\Rightarrow t=10x-5x\)=\(5x\)

\(h=8x-5x=3x\);\(k=5x-3x=2x\)

Ta có: a.h = b.k = c.t ﴾đều bằng 2 lần diện tích tam giác﴿

\(\Rightarrow\)a. 3x = b.2x = c.5x

=> 3a = 2b = 5c

=> \(\frac{3\text{a}}{30}=\frac{2b}{30}=\frac{5c}{30}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)

Tỉ lệ 3 cạnh của tam giác là 10 : 15 : 6

9 tháng 4 2017

sao h+k+t =5x

19 tháng 3 2019

Gọi độ dài 3 cạnh tam giác là a,b,c độ dài 3 đường cao tương ứng lần lượt là ha,hb,hc.

Ta có:\(\left(h_a+h_b\right):\left(h_b+h_c\right):\left(h_c+h_a\right)=3:5:6\)

Hay \(\frac{1}{3}\left(h_a+h_b\right)=\frac{1}{5}\left(h_b+h_c\right)=\frac{1}{6}\left(h_c+h_a\right)\)

Đặt:\(\frac{1}{3}\left(h_a+h_b\right)=\frac{1}{5}\left(h_b+h_c\right)=\frac{1}{6}\left(h_c+h_a\right)=k\)

\(\Rightarrow h_a+h_b=3k;h_b+h_c=5k;h_c+h_a=6k\)

\(\Rightarrow2\left(h_a+h_b+h_c\right)=14k\)

\(\Rightarrow h_a+h_b+h_c=7k\)

\(\Rightarrow h_a=2k;h_b=k;h_c=4k\)

Ta có:\(a\cdot h_a=b\cdot h_b=c\cdot h_c=2S\)(với S là diện tích tam giác)

\(\Rightarrow a\cdot2k=b\cdot k=c\cdot4k\)

\(\Rightarrow\frac{a\cdot2k}{4k}=\frac{b\cdot k}{4k}=\frac{c\cdot4k}{4k}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{1}\)

Vậy độ dài 3 cạnh tam giác lần lượt tỉ lệ với 2;4;1