K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

Ta xét mẫu số phân số thứ nhất:

6x^2-ax-2a^2

=6x^2+3ax-4ax-2a^2

=3x(2x+a)-2a(2x+a)

=(3x-2a)(2x+a)

Ta xét mẫu số phân số thứ hai:

4a^2-4ax-3x^2

=4a^2+2ax-6ax-3x^2

=2a(2a+x)-3x(2a+x)

=(2a-3x)(2a+x)

=> Biểu thức=\(\frac{a-x}{\left(2x+a\right)\left(3x-2a\right)}-\frac{a+x}{\left(2a-3x\right)\left(2a+x\right)}\)

=\(\frac{a-x}{\left(2x+a\right)\left(3x-2a\right)}+\frac{a+x}{\left(3x-2a\right)\left(2a+x\right)}\)

=\(\frac{2a}{ \left(2x+a\right)\left(3x-2a\right)}\)

26 tháng 9 2023

Mn giúp mik vs ạ

 

 

3 tháng 12 2019

a) \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}=\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x.x}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)

b) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)

\(=\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10+8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{1\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)

\(\frac{3x+2-12x+2+10x-8}{\left(3x-2\right)\left(3x+2\right)}=\frac{x-4}{\left(3x-2\right)\left(3+2\right)}\)

3 tháng 12 2019

c) \(\frac{4a^2-3a+5}{a^3-1}-\frac{1-2a}{a^2+a+1}-\frac{6}{a-1}\)

\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{2a-1}{a^2+a+1}-\frac{6}{a-1}\)

\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\frac{6\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{4a^2-3a+5+2a^2-2a-a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{-12}{\left(a-1\right)\left(a^2+a+1\right)}\)

d) \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}=\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}=\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x^2-6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{\left(x-3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x-3y}{x\left(x+3y\right)}\)

e) \(\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(=\frac{3x-2}{\left(x-1\right)^2}-\frac{6}{\left(x-1\right)\left(x+1\right)}-\frac{3x-2}{\left(x+1\right)^2}\)

\(=\frac{\left(3x+2\right)\left(x+1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}-\frac{6\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)}-\frac{\left(3x-2\right)\left(x-1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}\)

\(=\frac{3x^3+6x^2+3x+2x^2+4x+2-6x^2+6-3x^3+6x^2-3x+2x^2-4x+2}{\left(x-1\right)^2\left(x+1\right)^2}\)

\(=\frac{8x^2+10}{\left(x-1\right)^2\left(x+1\right)^2}\) 

f) \(\frac{5}{a+1}-\frac{10}{a-\left(a^2+1\right)}-\frac{15}{a^3+1}=\frac{5a^2}{a^3+1}+\frac{10}{a^3+1}-\frac{15}{a^3+1}\)

\(=\frac{5a^2+10-15}{a^3+1}=\frac{5a^2-5}{a^3+1}\)

2 tháng 7 2017

1,

\(x^2-2ax+a^2=\left(x-a\right)^2\)

\(x^2-ax=x\left(x-a\right)\)

Vậy MSC: \(\left(x-a\right)^2x\)

2,

\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2-x=x\left(x-1\right)\)

\(x^2+x+1\)

vậy MSC là: \(x\left(x-1\right)\left(x^2+x+1\right)\)

2 tháng 7 2017

còn 1 câu bạn ơi

5 tháng 4 2022

`Answer:`

1) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=[x\left(x+3\right)][\left(x+1\right)\left(x+2\right)]+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

2) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)

\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)

\(=[\left(12x^2+11x+0,5\right)+1,5][\left(12x^2+11x+0,5\right)-1,5]-4\)

\(=\left(12x^2+11x+0,5\right)^2-\left(1,5\right)^2-4\)

\(=\left(12x^2+11x+0,5\right)^2-\left(2,5\right)^2\)

\(=\left(12x^2+11x+0,5-2,5\right)\left(12x^2+11x+0,5+2,5\right)\)

\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

3) \(\left(x^2+6x+5\right)\left(x^2+10x+21\right)+15\)

\(=\left(x^2+x+5x+5\right)\left(x^2+3x+7x+21\right)+15\)

\(=\left(x+1\right)\left(x+5\right)\left(x+3\right)\left(x+7\right)+15\)

\(=[\left(x+1\right)\left(x+7\right)][\left(x+5\right)\left(x+3\right)]+15\)

\(=\left(x^2+x+7x+7\right)\left(x^2+3x+5x+15\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(v=x^2+=8x+11\)

Đa thức có dạng sau: \(\left(v-4\right)\left(v+4\right)+15\)

\(=v^2-4^2+15\)

\(=v^2-1\)

\(=\left(v+1\right)\left(v-1\right)\)

\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

4) \(\left(x^2-a\right)^2-6x^2+4x+2a\)

\(=\left(x^2-a\right)\left(x^2-a\right)-6x^2+4x+2a\)

\(=\left(x^2-a\right).x^2-a\left(x^2-a\right)-6x^2+4x+2a\)

\(=x^4-ax^2-a.\left(x^2-a\right)-6x^2+4x+2a\)

\(=x^4-ax^2-\left(ax^2-aa\right)-6x^2+4x+2a\)

\(=x^4-2ax^2+a^2-6x^2+2a+4x\)

6) \(a^2-b^2-c^2+2bc-2a+1\)

\(=\left(a^2-2a+1\right)-\left(b^2-2bc+c^2\right)\)

\(=\left(a-1\right)^2-\left(b-c\right)^2\)

\(=\left(a-b+c-1\right)\left(a+b-c-1\right)\)

7) \(4a^2-4b^2+16bc-16c^2\)

\(=4a^2-\left(4b^2-16bc+16c^2\right)\)

\(=\left(2a\right)^2-\left(2b-4c\right)^2\)

\(=\left(2a-2b+4c\right)\left(2a+2b-4c\right)\)

\(=2.\left(a-b-2c\right).2\left(a+b-2c\right)\)

\(=4\left(a-b-2c\right)\left(a+b-2c\right)\)