Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + \(\frac{1}{2}\left(1+2\right)\)+ \(\frac{1}{3}\left(1+2+3\right)\)+ .... + \(\frac{1}{100}\left(1+2+3+...+100\right)\)
A = \(1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{100}\cdot\frac{100.101}{2}\)
A = \(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)
A = \(\frac{2+3+4+...+101}{2}\)
A = \(\frac{\left(101+2\right).100}{2}\div2\)
A = \(5150\div2=2575\)
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
100/3 + 100/3^2 + 100/3^3 + 100/3^4
=100/3+100/3.100/3+100/3.100/3^2+100/3.100/3^3
=100/3.(1+100/3+100/3^2+100/3^3)
Tới đây bạn lấy máy tính tính ra ha!!!!!!
Haizzz!Lục mãi mới ra cái link:V
Câu hỏi của ❖︵Ňɠυүễη Çɦâυ Ƭυấη Ƙїệт♔ - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé !
\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.......+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)
\(\Leftrightarrow2B=1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+........+\dfrac{98}{2^{99}}+\dfrac{99}{2^{100}}\)
\(\Leftrightarrow2B-B=\left(1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+........+\dfrac{99}{2^{100}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+......+\dfrac{100}{2^{100}}\right)\)
\(\Leftrightarrow B=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
Đặt :
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+......+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)
\(\Leftrightarrow B=1-\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
\(\Leftrightarrow B=\dfrac{2^{100}-101}{2^{100}}\)
yêu cầu bạn ơi?
\(G=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3G-G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)\(-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{100}{3^{100}}\)
\(2G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(3M-M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)\(-1-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{99}}\)
\(2M=3-\frac{1}{3^{99}}\Leftrightarrow M=\frac{3}{2}-\frac{1}{3^{99}.2}\)
\(\Rightarrow2G=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)
\(\Rightarrow G=\frac{3}{4}-\frac{1}{3^{99}.2^2}-\frac{100}{3^{100}.2}\)