Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 1 ; y = -1 ta đc
\(\dfrac{1}{2}.1\left(-1\right)-\dfrac{3}{4}.1\left(-1\right)+1\left(-1\right)=-\dfrac{1}{2}+\dfrac{3}{4}-1=\dfrac{1}{4}-1=-\dfrac{3}{4}\)
\(a.3x-5y+1=3.\dfrac{1}{3}-5.\left(-\dfrac{1}{5}\right)+1=1+1+1=3\)
b.x=1
\(\Rightarrow3.1^2-2.1-5=-4\)
x=-1
\(\Rightarrow3.\left(-1\right)^2-2.\left(-1\right)-5=3+2-5=0\)
Vì |2x-y| \(\ge0\)\(\forall x,y\)
\(\left(y+2\right)^{2018}\ge0\forall y\)
\(\Rightarrow\left|2x-y\right|+\left(y+2\right)^{2018}\ge0\)
Dấu = xảy ra
\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y+2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)(Thay vào C ta đc )
\(C=2\cdot\left(-1\right)^{2019}-5\left(-2\right)^3+2019\)=2057
Vậy .......
Vì /2x-y/ \(\ge\)0 với mọi x,y,
(y + 2)2018\(\ge\)0 với mọi y
suy ra \(|2x-y|\)+ (y + 2)2018\(\ge\)0 với mọi x,y (1)
mà suy ra \(|2x-y|\)+ (y + 2)2018 =0 (2)
Từ (1) và (2) suy ra \(|2x-y|\)=0 và (y + 2)2018 = 0
suy ra 2x=y và y=-2
suy ra x=-1 và y=-2
Như vậy C= 2. ( -1)2019 - 5 (-2) 3 + 2019 = -2 +40 + 2019 = 2057
Ta có:
\(\left|x-1\right|+\left(y+2\right)^{20}=0\)
\(\Rightarrow\left|x-1\right|=0\) và \(\left(y+2\right)^{20}=0\)
+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)
\(\Rightarrow C=2x^5-5y^3+2015\)
\(=2.1^5-5.\left(-2\right)^3+2015\)
\(=2-\left(-40\right)+2015\)
\(=2057\)
Vậy C = 2057
a) Thay x = -1 và y = 3 vào A, ta được :
A = 2.(-1)[(-1) + 3] - (-1) + 7 - 3
A = -2.2 + 1 + 4
A = -4 + 5
A = 1
b) |y| = 3 => \(\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
*Thay x =-1 và y = 3 vào biểu thức :
Phần này bạn sẽ làm ý như câu a vậy :33
*Thay x = -1 và y =-3 vào A, ta được :
A = 2.(-1).[(-1) + (-3)] - (-1) + 7 - (-3)
A = -2.(-4) + 1 + 7 + 3
A = 8 + 11
A = 19
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
A = -2x - 5y +7
Thay x = -2; y = 3 vào A; ta có:
A = -2 .(-2) - 5.3 + 7
= 4 - 15 + 7
= -4
\(-2x-5y+7=-2\left(-2\right)-5\left(3\right)+7=4-15+7=-11+7=-4\)