Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1+\dfrac{1}{100}\right)\times\left(1+\dfrac{1}{99}\right)\times....\times\left(1+\dfrac{1}{3}\right)\times\left(1+\dfrac{1}{2}\right)\)
\(B=\dfrac{101}{100}\times\dfrac{100}{99}\times...\times\dfrac{4}{3}\times\dfrac{3}{2}\)
\(B=\dfrac{101\times100\times....\times4\times3}{100\times99\times....\times3\times2}\)
\(B=\dfrac{101}{2}\)
\(\Rightarrow B=\left(\dfrac{100}{100}+\dfrac{1}{100}\right)\times\left(\dfrac{99}{99}+\dfrac{1}{99}\right)\times...\times\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\times\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\)
\(B=\dfrac{101}{100}\times\dfrac{100}{99}\times...\times\dfrac{4}{3}\times\dfrac{3}{2}\)
\(B=\dfrac{101}{2}\)( triệt tiêu các mẫu, tử giống nhau)
\(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\times\left(1-\dfrac{1}{6}\right)\times\dots\times\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\) (sửa đề)
\(=\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\times\dfrac{5}{6}\times\dots\times\dfrac{98}{99}\times\dfrac{99}{100}\)
\(=\dfrac{2\times3\times4\times5\times\dots\times98\times99}{3\times4\times5\times6\times\dots\times99\times100}\)
\(=\dfrac{2}{100}\)
\(=\dfrac{1}{50}\)
B=3/2x4/3x...........x2018/2017
=3x4x5x...........x2018/2x3x2x2x............x2017
=2x2018
=4036
A,C tương tự
\(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2004}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2003}{2004}\)
\(B=\dfrac{1\cdot2\cdot3\cdot...\cdot2003}{2\cdot3\cdot4\cdot...\cdot2004}\)
\(B=\dfrac{1}{2004}\)
B=(1-1/2)x(1-1/3)x(1-1/4)x(1-1/5)...(1-1/2003)x(1-1/2004)
B=1/2x2/3x3/4x4/5x...x2002/2003x2003/2004
B=1/2004
(1-1/2)x(1-1/3)x(1-1/4)x....x(1-1/1996)x(1-1/997)
=1/2x2/3x3/4x....x1995/1996x1996/1997
=1x2x3x...x1995x1996/2x3x4x...x1996x1997
=1/1997
\(\Rightarrow\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{1996}{1997}\)
\(\Leftrightarrow1x\frac{1}{1997}\)\(=\frac{1}{1997}\)
\(\left(1+\frac{1}{100}\right).\left(1+\frac{1}{99}\right).....\left(1+\frac{1}{3}\right).\left(1+\frac{1}{2}\right)\)
\(=\frac{101}{100}.\frac{100}{99}.....\frac{4}{3}.\frac{3}{2}\)
\(=\frac{101}{2}\)
= 100
50