K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Ta có: \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Leftrightarrow\left[\left(x-1\right)^{10}\right]^2+\left[\left(y+2\right)^{15}\right]^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^{10}=0\\\left(y+2\right)^{15}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Thay x=1, y = -2 vào biểu thức A ta được A= 38

19 tháng 3 2018

Ta có \(\left(x-1\right)^{20}\ge0\);\(\left(y+2\right)^{30}\ge0\)

\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)

\(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^{20}=0\\\left(y+2\right)^{30}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Thay vào ta có \(A=2.1^5-5.\left(-2\right)^3-4=2+40-4=38\)

14 tháng 2 2018

Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)

Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )

\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được : 

\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)

a) Ta có 2011 = x => 2012 = x + 1

Thay x + 1 = 2012 vào biểu thức ta dc:

x5 - (x + 1)x4 + (x + 1)x3 - (x+1)x2 + (x+1)x - 2012

= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 2012 = x - 2012 = 2011 - 2012 = -1

Vậy giá trị của biểu thức là -1 khi x = 2011

b) Ta có : (x - 1)60 + (y + 2)90 = 0 <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức ta dc: 2.15 - 5.(-2)3 + 4 = 2 - 5.(-8) + 4 = 2 + 40 + 4 = 46

Vậy ...

11 tháng 4 2022

-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)

-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)

\(\Rightarrow x=-1;y=2\)

-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:

\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)

1 tháng 11 2023

(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0

⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0

*) (x + 20)⁴ = 0

x + 20 = 0

x = 0 - 20

x = -20

*) (2y - 1)²⁰²⁴ = 0

2y - 1 = 0

2y = 1

y = 1/2

M = 5.(-20)².1/2 - 4.(-2).(1/2)²

= 1000 + 2

= 1002

18 tháng 3 2018

a)\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\)

\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2019\)

\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2019\)

\(A=x-2019=2017-2019=-2\)

b)ta có:\(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

Thay vào \(\Rightarrow B=2\cdot\left(-1\right)^5+5\cdot\left(-2\right)^3+4\)

\(B=-2+\left(-40\right)+4=-38\)

18 tháng 3 2018

thục hiền đc đó thục hiền ak nay vẫn hoc24 bình thường à hiha

9 tháng 6 2021

Ta có: \(\left(x-1\right)^{20}\ge0\forall x\)

           \(\left(y+2\right)^{30}\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)

Mà \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Rightarrow\left(x-1\right)^{20}=\left(y+2\right)^{30}=0\)

\(\Rightarrow x-1=y+2=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức A ta được:

\(A=2.1^5-5.\left(-2\right)^3+4=-76\)

Vậy A = -76 tại x = 1 và y = -2.

9 tháng 6 2021

Ta có : \(\hept{\begin{cases}\left(x-1\right)^{20}\ge0\forall x\\\left(y+2\right)^{30}\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\forall x;y\)

Dựa vào đề bài ta có \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Khi đó A = 2.15 - 5.(-2)3 + 4 = 2 + 40 + 4 = 46

5 tháng 11 2023

Ta có:

\(\left(x-1\right)^2+\left(y+2\right)^2=0\)

Do: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Mặt khác: \(\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Thay vào B ta có:

\(B=2\cdot1^5-5\cdot\left(-2\right)^3+4=2\cdot1-5\cdot-8+4=2+40+4=46\)