Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left|x-1\right|+\left(y+2\right)^{20}=0\)
\(\Rightarrow\left|x-1\right|=0\) và \(\left(y+2\right)^{20}=0\)
+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)
\(\Rightarrow C=2x^5-5y^3+2015\)
\(=2.1^5-5.\left(-2\right)^3+2015\)
\(=2-\left(-40\right)+2015\)
\(=2057\)
Vậy C = 2057
Ta có :
\(\left(x+1\right)^{20}+\left(y+2\right)^{26}=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)
Thay \(x=-1\) và \(y=-2\) vào đa thức \(2x^8-3y^5+2\) ta được :
\(2\left(-1\right)^8-3\left(-2\right)^5+2\)
\(=\)\(2.1-3.\left(-32\right)+2\)
\(=\)\(2+96+2\)
\(=\)\(100\)
Vậy giá trị của đa thức \(2x^8-3y^5+2\) tại x, y thoã mãn điều kiện \(\left(x+1\right)^{20}+\left(y+2\right)^{26}=0\) là \(100\)
Chúc bạn học tốt ~
Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)
Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )
\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được :
\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)
-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)
-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)
\(\Rightarrow x=-1;y=2\)
-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:
\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)
Vì \(\left|x-2\right|\ge0;\sqrt{\left(y+1\right)^{2015}}\ge0\) \(\forall\) \(x\)
\(\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}=0\)
\(\Rightarrow\left|x-2\right|=0;\sqrt{\left(y+1\right)^{2015}}=0\)
\(\Rightarrow x-2=0;y+1=0\)
\(\Rightarrow x=2;y=-1\) Thay vào C ta được :
\(C=2.\left(-1\right)^3+15.2^3+2015=-2+120+2015=2133\)
|x-1| +(y+2)^20=0
|x-1| \(\ge0\)
(y+2)^20 \(\ge\)0
=> |x-1| +(y+2)^20\(\ge\) 0
"=" xảy ra khi x=1 y=-2
Với x=1 y=-2 thay vào tính C