K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 9 2016
\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)
15 tháng 10 2016
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
3 tháng 2 2016
nk tuấn ơi cậu có thấy vô lí chỗ đầu thì mẫu toàn số lẻ lúc sau là số chẵn ko
Dat bieu thuc tren la A
ta co \(\frac{1}{\sqrt{n+2}+\sqrt{n}}=\frac{\sqrt{n+2}-\sqrt{n}}{2}\)
ap dung dang thuc tren ta co\(\frac{1}{\sqrt{3}+1}=\frac{\sqrt{3}-1}{2}\)
tuong tu ta co \(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{5}-\sqrt{3}}{2}\)
.........
\(\frac{1}{\sqrt{2017}+\sqrt{2015}}=\frac{\sqrt{2017}-\sqrt{2015}}{2}\)
ta co
\(A=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+.....+\sqrt{2017}-\sqrt{2015}\right)=\frac{\sqrt{2017}-1}{2}\)