Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:1/1.2+1/3.4+1/5.6+...+1/199.200
=1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=(1+1/3+1/5+1...199)-2(1/2+1/4+1/6+...+200)
=(1+1/2+1/3+...+1//100)+(1/101+1/102+...+1/200)-(1+1/2+1/3+...+100)
=(1/101+1/102+...+200)=mẫu
bạn xem lại là so sonh hay là tính nha nếu ko minh làm lại cho
Đặt \(A=\frac{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}\)
Tử số của A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(\Rightarrow A=1\left(đpcm\right)\)
Trước tiên, chúng ta cần có lý thuyết về biến đổi phân số.
\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)
Ta có:
\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)
\(S=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...-\dfrac{1}{2018}\)
\(S=1-\dfrac{1}{2018}\)
\(S=\dfrac{2017}{2018}\)
=1/1.2+1/2.3+1/3.4+...1/2017.2018
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018
=1-1/2018
=2018/2018-1/2018
=2017/2018
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(\frac{1}{1.2}\)\(+\frac{1}{2.3}+\)\(\frac{1}{3.4}\)\(+\)\(.............+\)\(\frac{1}{2017.2018}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2017}-\frac{1}{2018}\)
\(=\frac{1}{1}-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{2018-2017}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
Số số hạng của A là:
(200-101):1+1=100(số)
Nếu ta nhóm A thành các nhóm,mỗi nhóm 50 số hạng ta được :
100:50=2(nhóm)
Ta có :
A=(1/101+1/102+...+1/150)+(1/151+1/152+1/153+...+1/200)
Vì 1/101<1/102<1/103<...<1/150 nên 1/101+1/102+...+1/150<1/150x50
1/151<1/152<1/153<...<1/200 nên 1/151+1/152+1/153+...+1/200<1/200x50
Từ 3 điều trên suy ra:
A<1/150x50+1/200x50
A<1/3+1/4
A<7/12
vậy A<7/12
❤~~~ HỌC TỐT~~~❤Đặng Khánh Duy