Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
A = 2x(3x – 1) – 6x(x + 1) – (3 – 8x)
ó A = 2x.3x – 2x.1 – 6x.x – 6x.1 – 3 + 8x
ó A = 6 x 2 – 2x – 6 x 2 – 6x – 3 + 8x
ó A = -3
Đáp án cần chọn là: B
Lời giải:
$(2x-1)(8x-3)-(4x-1)^2+6x=16x^2-6x-8x+3-(16x^2-8x+1)+6x$
$=16x^2-14x+3-16x^2+8x-1+6x$
$=(16x^2-16x^2)+(-14x+8x+6x)+(3-1)=0+0+2=2$ là giá trị không phụ thuộc vào biến $x$
a>(8x^2y+10xy6^2-6xy):2xy=4xy+5y-3
b>(3x^2-4x).(2x-6)=6x^3-26x^2+24x
a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)
\(ĐTXR\Leftrightarrow x=4\)
b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=1\)
c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a: Ta có: \(A=-x^2-8x+1\)
\(=-\left(x^2+8x-1\right)\)
\(=-\left(x^2+8x+16-17\right)\)
\(=-\left(x+4\right)^2+17\le17\forall x\)
Dấu '=' xảy ra khi x=-4
b: Ta có: \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
\(M=\left(\dfrac{1}{2}x-2\right)^3=\left(12-2\right)^3=1000\)