K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

\(x^3=7+\sqrt{\frac{49}{8}}+7-\sqrt{\frac{49}{8}}+3.\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7+\sqrt{\frac{49}{8}}\right)}.x\)

\(x^3=14+3.\frac{7}{2}.x\)

\(2x^3=21x+28\) thay vào N :

\(N=\left(21x+28-21x-29\right)^{2020}=\left(-1\right)^{2020}=1\)

27 tháng 5 2017

\(x=\sqrt[3]{7+\sqrt{\frac{49}{8}}}+\sqrt[3]{7-\sqrt{\frac{49}{8}}}\)

ta lập phương hai vế có

\(x^3=7+\sqrt{\frac{49}{8}}+7-\sqrt{\frac{49}{8}}+3\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}x\)

\(< =>x^3=14+3\sqrt[3]{7^2-\frac{49}{8}}x\)

\(< =>x^3=14+3\sqrt[3]{\frac{343}{8}}x\)

\(< =>x^3=14+3.\frac{7}{2}x\)

\(< =>2x^3-21x-28=0\)

nên 

\(fx=\left(2x^3-21x-29\right)^3=\left(2x^3-21x-28-1\right)^3=\left(-1\right)^3=-1\)

25 tháng 7 2019

1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)

\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)

\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)

Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)

2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)

Áp dụng công thức trên ta được n=2016

3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)

\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)

Thay x=1/3 vào A ta được;

\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)

Bài 4

ÁP DỤNG BĐT CAUCHY 

là ra

Bài 2: 

\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

Ta có: \(P=x^2-2x+2020\)

\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)

\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)

=2026

Bài 1: 

\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)

\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)

=-6

25 tháng 7 2018

a,\(x\ge0,x\ne49\)

28 tháng 4 2016

a. ĐK: \(x\ge0,x\ne49\)

\(M=\frac{3\left(\sqrt{x}+7\right)-\left(\sqrt{x}-7\right)}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}:\frac{2\sqrt{x}+6}{x-49}\)

\(=\frac{2\sqrt{x}+28}{x-49}.\frac{x-49}{2\sqrt{x}+6}=\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\)

b. M nguyên \(\Leftrightarrow\frac{2\sqrt{x}+28}{2\sqrt{x}+6}\in Z\Rightarrow\frac{2\sqrt{x}+6+22}{2\sqrt{x}+6}\in Z\Rightarrow1+\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\frac{22}{2\sqrt{x}+6}\in Z\Rightarrow\left(2\sqrt{x}+6\right)\inƯ\left(22\right)\)

Đến đây đã rất dễ dàng rồi nhé ^^

29 tháng 4 2016

đề không cho tìm x NGUYÊN để m nguyên mà chỉ tìm các điểm x để  m nguyên thôi

ĐK: \(x-9\ne0\Rightarrow x\ne9\)

\(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)

\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)

2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)

\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)

\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)