Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-3x^2y+3xy^2-y^3\)
\(=x^3-3\cdot x^2\cdot y+3\cdot x\cdot y^2-y^3\)
\(=\left(x-y\right)^3\)
Thay x=3 và y=2 vào ta có:
\(\left(3-2\right)^3=1^3=1\)
\(3^2.3^3+2^3.2^2=3^{2+3}+2^{3+2}=3^5+2^5=243+32=275\)
\(a,x^2y-8x+xy-8=xy\left(x+1\right)-8\left(x+1\right)=\left(xy-8\right)\left(x+1\right)\\ b,=\left(x+3y\right)^2-9=\left(x+3y-3\right)\left(x+3y+3\right)\)
\(A=3x^2\left(2x^2-7x-2\right)-6x^2\left(x^2-4x-1\right)-3x^3+15\\ A=6x^4-21x^3-6x^2-6x^4+24x^3+6x^2-3x^3+15\\ A=15\left(đpcm\right)\)
\(Sửa:\left(6x^3-7x^2+2x\right):\left(2x+1\right)\\ =\left(6x^3+3x^2-10x^2-5x\right):\left(2x+1\right)\\ =\left[3x^2\left(2x+1\right)-5x\left(2x+1\right)\right]:\left(2x+1\right)\\ =3x^2-5x\)
2. GIẢI
Ta có : \(\left(-2a^{ }\right)^3\).\(\left(3b^{ }\right)^2\)
Thay a=-1;b=-3 ta được:
\(\left[\left(-2\right).\left(-1\right)\right]^3\).\(\left[3.\left(-3\right)\right]^2\)=\(2^3.\left(-9\right)^2\)=\(8.81\)=\(648\)
1. GIẢI
Ta có : (x-1)(x+2)=0
=>\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0+1\\x=0-2\end{cases}}\)=>\(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy \(x\in\){-2;1}
\(^{3^2}\).\(^{3^3}\)+\(2^3\).\(2^2\)
(\(^{2^3}\).\(^{3^3}\))+(\(2^2\).\(^{3^2}\)
=275
1. a) 4.415.8.25.125
= (4.25). (8.125).415
= 100.1000.415
= 100000.415
= 41500000
b) 2.31.12+4.42.6+8.27.3
= (2.31.12)+(4.42.6)+(8.27.3)
= (2.12).31+(4.6).42+(8.3).27
= 24.31+24.42+24.27
= 24 (31+42+27)
= 24.100
= 2400
nhanh hộ sunny vs các tềnh yew ới ời ơi !
\(P=x^3+2x^2+x+1\)
Khi \(x=3\Rightarrow P=3^3+2.3^2+3+1=49\)