Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
Ta có:
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\) \(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)
nha
Nhân 2 cả 2 vế lên:
\(\left(2x+\frac{2}{1x3}\right)+...+\left(2x+\frac{2}{23x25}\right)=22x+\frac{2}{3}+\frac{2}{9}+\frac{2}{81}+\frac{2}{243}\)2/243
\(24x+\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{23}-\frac{1}{25}\right)=22x+\frac{162+54+6+2}{243}\)
\(24x+\frac{24}{25}=22x+\frac{224}{243}\)
\(2x=\frac{224}{243}-\frac{24}{25}\)
\(2x=-\frac{232}{6025}\)
\(x=\frac{-116}{6075}\)
\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11.x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}\right)\)
\(12x+\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]=11.x+\left(\frac{81}{243}+\frac{27}{243}+\frac{3}{243}+\frac{1}{243}\right)\)
\(12x+\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{25}\right)\right]=11.x+\frac{112}{243}\)
\(12x+\left(\frac{1}{2}.\frac{24}{25}\right)=11.x+\frac{112}{243}\)
\(12x+\frac{12}{25}=11x+\frac{112}{243}\)
\(11x-12x=\frac{112}{243}-\frac{12}{25}\)
\(-1x=-\frac{116}{6075}\)
\(x=-\frac{116}{6075}\div\left(-1\right)\)
\(x=\frac{116}{6075}\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot.....\cdot\frac{2014}{2013}\)
\(=\frac{2}{2013}\)
\(A=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{2006}{2007}=\frac{1}{2007}\)
k nha bạn
=) \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{255}{256}.x=\frac{108}{7}\)
=) \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{15.17}{16.16}.x=\frac{108}{7}\)
=) \(\frac{1.2.3.4.....15}{2.3.4.....16}.\frac{3.4.5.....17}{2.3.4.....16}.x=\frac{108}{7}\)
=) \(\frac{1}{16}.\frac{17}{2}.x=\frac{108}{7}\)=) \(\frac{17}{32}.x=\frac{108}{7}\)=) \(x=\frac{108}{7}:\frac{17}{32}\)
=) \(x=\frac{3456}{119}\)
Ta có:
\(A=\left(x-\frac{1}{2}\right).\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\frac{9}{10}=\frac{1}{3}\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}.\frac{10}{9}\Leftrightarrow x=\frac{47}{54}\)
\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}=\frac{1}{10.x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\Leftrightarrow B=\frac{1}{5}.\frac{100}{101}=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{x}=\frac{1}{10}-\frac{20}{101}=-\frac{99}{1010}\Leftrightarrow x=-\frac{1010}{99}\)
c) Sai đề nhé bạn vì không có kết quả nên không tìm được x.
d) \(\left(x-5\right).\left(10-9\frac{40}{41}\right):\left(1-\frac{81}{82}\right):\left(1-\frac{204}{205}\right)=2050\)
\(\Rightarrow\left(x-5\right).\frac{1}{41}.82.205=2050\)
\(\Rightarrow\left(x-5\right).2.205=2050\Leftrightarrow x-5=2050:410=5\Leftrightarrow x=10\)