Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1.2.6.4.6.4.5.2}{2.3.6.8.6.2.2.2.8.10}=\frac{1}{96}\)
= \(\frac{1x1x1}{1x2x4}x\frac{2.2.1}{1.1.2.2}=\frac{1}{8}.1=\frac{1}{8}\)
=1X2X3/1X2X3X4X2= 1/8 =3X2X2X2X5/3X2X2X5X2= 1/1
=1/8X1/1=1/8
\(\frac{6:\frac{3}{5}-1\frac{1}{6}\times\frac{6}{7}}{4\frac{1}{5}\times\frac{10}{11}+5\frac{2}{11}}\)
\(=\frac{\frac{6}{1}:\frac{3}{5}-\frac{7}{6}\times\frac{6}{7}}{\frac{21}{5}\times\frac{10}{11}\times\frac{57}{11}}\)
\(=\frac{\frac{6}{1}\times\frac{5}{3}-1}{\frac{210}{55}+\frac{57}{11}}\)
\(=\frac{\frac{30}{3}-1}{\frac{42}{11}+\frac{57}{11}}\)
\(=\frac{10-1}{\frac{99}{11}}\)
\(=\frac{9}{9}\)
\(=1\)
\(6:\frac{3}{5}-1\frac{1}{6}\)X \(\frac{6}{7}\) \(4\frac{1}{5}\)X \(\frac{10}{11}+5\frac{2}{11}\)
\(=\frac{33}{5}-\frac{7}{6}\)X \(\frac{6}{7}\) \(=\) \(\frac{21}{5}\)X \(\frac{10}{11}+\frac{57}{11}\)
\(=\frac{33}{5}-1\) \(=\frac{42}{11}+\frac{57}{11}\)
\(=\frac{28}{5}\) \(=\frac{99}{11}=9\)
\(\frac{\left(\frac{3}{15}+\frac{1}{4}+\frac{7}{20}\right)\times\frac{17}{49}}{5\frac{1}{3}+\frac{2}{5}}\)
\(=\frac{\left(\frac{12}{60}+\frac{15}{60}+\frac{21}{60}\right)\times\frac{17}{49}}{\frac{16}{3}\times\frac{2}{5}}\)
\(=\frac{\frac{48}{60}\times\frac{17}{49}}{\frac{80}{15}+\frac{6}{15}}\)
\(=\frac{\frac{816}{2940}}{\frac{86}{15}}\)
\(=\frac{816}{2940}:\frac{86}{15}\)
\(=\frac{816}{2940}\times\frac{15}{86}\)
\(=\frac{68}{245}\times\frac{15}{86}\)
\(=\frac{102}{2107}\)
\(\frac{6:\frac{3}{5}-1\frac{1}{6}\cdot\frac{6}{7}}{4\frac{1}{5}\cdot\frac{10}{11}+5\frac{2}{11}}=1\)
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(6\frac{3}{5}:6-\frac{1}{8}\times8+\frac{1}{3}\times\frac{3}{50}=\frac{33}{5}\times\frac{1}{6}-1+\frac{1}{50}\)
\(=\frac{33}{30}-1+\frac{1}{50}=\frac{3}{25}\)
Giải: \(6\frac{3}{6}:6-\frac{1}{8}.8+\frac{1}{3}.\frac{3}{50}\)
\(=\frac{13}{2}:6-\frac{1}{8}.8+\frac{1}{3}.\frac{3}{50}\)
\(=\frac{13}{12}-1+\frac{1}{50}\)
\(=\frac{1}{12}+\frac{1}{50}\)
\(=\frac{31}{300}\)