K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
BT
25 tháng 7 2018
a)=\(a^3-3a^2+3a-1+5=\left(a-1\right)^3+5\)
Thay a=11 ta có
=103+5=1005
b)\(=2\left(x+y\right)\left(x^2+y^2-xy\right)-3\left(x^2+y^2\right)=2x^2+2y^2-2xy-3x^2-3y^2\)
\(=-\left(x^2+y^2+2xy\right)=-\left(x+y^2\right)=-1\)
NT
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
2
BT
30 tháng 6 2018
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
NT
2
NT
Nguyễn Thị Thương Hoài
Giáo viên
VIP
12 tháng 7
b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))
1 = \(x^3\) - y3 - 3\(xy\)