K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

B = (x + 2)3 + (x - 2)3 - 2x(2x2 + 12)

B = (x + 2)(x2 + 2x.2 + 22) + (x - 2)(x2 - 2x.2 + 22) - 2x(2x3 + 12)

B = x3 + 4x3 + 4x + 2x2 + 8x + 8 + x3 - 4x2 + 4x - 2x2 + 8x - 8 - 4x3 - 24x

B = -2x3

15 tháng 8 2021

học dốt

a: \(x^2+x-2x-2\)

\(=x\left(x+1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(x-2\right)=\left(-1+1\right)\left(-1-2\right)=0\)

b: \(3x^2-2x+9x-6\)

\(=x\left(3x-2\right)+3\left(3x-2\right)\)

\(=\left(3x-2\right)\left(x+3\right)=\left(3\cdot7-2\right)\left(7+3\right)\)

\(=19\cdot10=190\)

c: \(2x^2-3xy-xy^2\)

\(=x\left(2x-3y-y^2\right)\)

\(=2\left(2\cdot2-3\cdot3-9\right)\)

\(=2\cdot\left(4-18\right)=-28\)

a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)

\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)

\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)

\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)

\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)

\(=-12x^3+16x^2y-7xy^2\)

\(\left(x-2\right)^2+y^2=0\)

mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)

nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)

=>x=2 và y=0

Thay x=2 và y=0 vào F, ta được:

\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)

\(=-12\cdot2^3\)

\(=-12\cdot8=-96\)

b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=x^3+y^3+3\left(8x^3-y^3\right)\)

\(=x^3+y^3+24x^3-3y^3\)

\(=25x^3-2y^3\)

Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)

Thay x=5 và y=-3 vào G, ta được:

\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)

\(=25\cdot125-2\cdot\left(-27\right)\)

\(=3125+54=3179\)

c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)

\(=x^3+27y^3+27x^3-y^3\)

\(=28x^3-26y^3\)

Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)

Thay x=2 và y=1 vào H, ta được:

\(H=28\cdot2^3-26\cdot1^3\)

\(=28\cdot8-26\)

=198

Bài 1:Đơn giản biểu thứca,(x-3)x^2+3x+9               b,(3x-1)9x^2+3x+1                c,(1-x/2)(1+x/2+x^2/4)             d,(x/3-y)(x^2/9+xy/3+y^2)Bài2:Rút gọn biểu thứca,P=(2x-1)4x^2+2x+1+(x+1)x^2-x+1                b,Q=(x-y)x^2+xy+y^2-(x+y)x^2-xy+y^2+2y^3     Bài 3. Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của xa,A=6(x+2)x^2-2x+4-6x^3-2                          b,B=2(3x+1)9x^2-3x+1-54x^3      Bài 4:Tính giá trị biểu...
Đọc tiếp

Bài 1:Đơn giản biểu thức

a,(x-3)x^2+3x+9               b,(3x-1)9x^2+3x+1                c,(1-x/2)(1+x/2+x^2/4)             d,(x/3-y)(x^2/9+xy/3+y^2)

Bài2:Rút gọn biểu thức

a,P=(2x-1)4x^2+2x+1+(x+1)x^2-x+1                b,Q=(x-y)x^2+xy+y^2-(x+y)x^2-xy+y^2+2y^3     

Bài 3. Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của x

a,A=6(x+2)x^2-2x+4-6x^3-2                          b,B=2(3x+1)9x^2-3x+1-54x^3      

Bài 4:Tính giá trị biểu thức:

a,A=(x+y)^3+x^3 biết 2x+y=0                     b,x^3-y^3-3xy biết x-y=1

Bài 5. Viết các biểu thức sau dưới dạng tích: 

a,x^3+1                b,x^3-1/27                   c,x^3-27y^3               d,27x^3+8y^3

Bài 6:Rứt gọn các biểu thức

a,A=(x+2)x^2-2x+4-x^3+2                 b,B=(x-1)x^2+x+1-(x+1)x^2-x+1                 c,(2x-y)4x^2+2xy+y^2+(y-3x)y^2+3xy+9x^2

Bài 7:Tìm x biết

a,(2x-1)4x^2+2x+1-8x.x^2-1=15                         b,(x-1)x^2+x+1-(2+x)4-2x+x^2=3x

 

 

 

 

 

 

 

 

 

 

0
1 tháng 8 2020

Bài 1 :

a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)

\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)

\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)

d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)

\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)

\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)

e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)

\(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)

\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)

1 tháng 8 2020

Bài 2 :

3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15

Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)

\(=-\frac{15}{2}-3+15=\frac{9}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x - 12x + 4  + 35 - 14x

= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39

Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37

c) 4x - 2(10x + 1) + 8(x - 2)

= 4x - 20x - 2 + 8x - 16

= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18

Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)

d) Tương tự

Bài 3:

a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)

=> 2x2 - 8x - 2x2 - 3x = 4

=> (2x2 - 2x2) + (-8x - 3x) = 4

=> -11x = 4

=> x = \(-\frac{4}{11}\)

b) x(5 - 2x) + 2x(x - 7) = 18

=> 5x - 2x2 + 2x2 - 14x = 18

=> 5x - 14x = 18

=> -9x = 18

=> x = -2

Còn 2 câu làm tương tự

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

18 tháng 6 2016

f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)

\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)

\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)

\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)

\(-x^3=27\)

\(x=-3\)

18 tháng 6 2016

Bài 1:

a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(6x-9+4-2x=-3\)

\(4x=-2\)

\(x=-\frac{1}{2}\)

b/ \(2x\left(x^2-2\right)+x^2\left(1-2x\right)-x^2=-12\)

\(2x^3-4x+x^2-2x^3-x^2=-12\)

\(-4x=-12\)

\(x=\frac{1}{3}\)