Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5
a) A = -x³ + 6x² - 12x + 8
= -x³ + 3.(-x)².2 - 3.x.2² + 2³
= (-x + 2)³
= (2 - x)³
Thay x = -28 vào A ta được:
A = [2 - (-28)]³
= 30³
= 27000
b) B = 8x³ + 12x² + 6x + 1
= (2x)³ + 3.(2x)².1 + 3.2x.1² + 1³
= (2x + 1)³
Thay x = 1/2 vào B ta được:
B = (2.1/2 + 1)³
= 2³
= 8
Bài 6
a) 11³ - 1 = 11³ - 1³
= (11 - 1)(11² + 11.1 + 1²)
= 10.(121 + 11 + 1)
= 10.133
= 1330
b) Đặt B = x³ - y³ = (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + 3xy)
= (x - y)[(x - y)² + 3xy]
Thay x - y = 6 và xy = 9 vào B ta được:
B = 6.(6² + 3.9)
= 6.(36 + 27)
= 6.63
= 378
Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:
\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).
Không mất tính tổng quát, giả sử x + y = 0
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow x^3=-y^3\).
Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).
Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).
a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy=-1\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)
a: \(A=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\left(x+2\right)=-\dfrac{6}{x-2}\)
Câu 1: x^3+y^3+3xy
=(x+y)^3-3xy(x+y)+3xy
=(x+y)^3-3xy+3xy
=1
Câu 2:
x^3-y^3-3xy
=(x-y)^3+3xy(x-y)-3xy
=1^3
=1
Câu 3:
\(x^2+y^2=\left(x+y\right)^2-2xy=4-2\cdot\left(-15\right)=4+30=34\)
Câu 4:
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=-8-3\cdot\left(-2\right)\cdot\left(-15\right)=-8-3\cdot30=-98\)
Câu 5: B
Câu 6: C
Câu 7: B
Câu 8: D
Câu 10: B
1) Nếu x+y=1, thì giá trị của biểu thức x3+y3+3xy là
A.2
B.3
C.4
D.cả A,B,C đều sai
2)Nếu x-y=1, thì giá trị của biểu thức x3-y3-3xy là
A.1
B.2
C.3
D.4
3) Cho x+y= -2, xy=-15 thì giá trị của biểu thức x2+y2 là.
A) 30 ; B) 32 ;C) 28 ; D) Cả A và B đều sai.
4) Với giả thiết bài 3, ta có giá trị của biểu thức x3+y3 là:
A) 80 ; B) 81; C) 82 ; D) Một kết quả khác
5) Với giả thiết bài 3, ta có giá trị của biểu thức x4+y4 là:
A. 706 ; B. 702 ; C. 708 ; D. 704
6)Giá trị nhỏ nhất của biểu thức P= x(x+1)(x+2)(x+3) là
A. 1 ; B. 2 ; C. -1 ; D.-2
7)Cho biểu thức M=2x2+9y2- 6xy-6x-12y+2037 . Giá trị nhỏ nhất của biểu thức M là
A. 2007 ; B. 2008 ; C; 2009 ; D. 2010
8) Với giả thiết bài 7 , biểu thức M đạt giá trị nhỏ nhất khi
A)x=5;y= 7/3
B)x= -5; y= 7/3
C) x=5; y= -7/3
D)cả A và C đều sai
9) Cho biểu thức Q= 2xy+6x-2y-2x2-y2+ 2015 .Giá trị lớn nhất của biểu thức Q là
A. 2010 ; B. 2012 ; C. 2020 ; D. Một kết quả khác
a) \(A=x^3+y^3+3xy\)
\(=x^3+y^3+3xy\left(x+y\right)\) (do \(x+y=1\))
\(=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x+y\right)^3\) \(=1\)
b) \(B=x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\) (do \(x-y=1\))
\(=x^3-3x^2y+3xy^2-y^3\)
\(=\left(x-y\right)^3\) \(=1\)
a: \(=\left(x-y\right)^3=100^3=1000000\)