Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mặt phẳng với hệ tọa độ Oxy, với mỗi số thực x, xét các điểm A(c; x+1); \(B\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) và \(C\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)
Khi đó, ta có \(P=\frac{OA}{a}+\frac{OB}{b}+\frac{OC}{c}\) trong đó a=BC, b=CA, c=AB
Gọi G là trọng tâm của tam giác ABC, ta có :
\(P=\frac{OA.GA}{a.GA}+\frac{OB.GB}{b.GB}+\frac{OC.GC}{c.GC}=\frac{3}{2}\left(\frac{OA.GA}{a.m_a}+\frac{OB.GB}{b.m_b}+\frac{OC.GC}{c.m_c}\right)\)
Trong đó \(m_a;m_b;m_c\) tương ứng là độ dài đường trung tuyến xuất phát từ A,B, C của tam giác ABC
Theo bất đẳng thức Côsi cho 2 số thực không âm, ta có
\(a.m_a=\frac{1}{2\sqrt{3}}.\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}\)
\(\le\frac{1}{2\sqrt{3}}.\frac{3a^2\left(2b^2+2c^2-a^2\right)}{2}=\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
bằng cách tương tự, ta cũng có \(b.m_b\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\) và \(c.m_c\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
Suy ra \(P\ge\frac{3\sqrt{3}}{a^2+b^2+c^2}\left(OA.GA+OB.GB+OC.GC\right)\) (1)
Ta có \(OA.GA+OB.GB+OC.GC\ge\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}.\) (2)
\(\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}\)
\(=\left(\overrightarrow{OG}+\overrightarrow{GA}\right).\overrightarrow{GA}+\left(\overrightarrow{OG}+\overrightarrow{GB}\right).\overrightarrow{GB}+\left(\overrightarrow{OG}+\overrightarrow{GC}\right).\overrightarrow{GC}\)
\(=\overrightarrow{OG}.\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+GA^2+GB^2+GC^2\)
\(=\frac{4}{9}\left(m_a^2+m_b^2+m_c^2\right)\) \(=\frac{a^2+b^2+c^2}{3}\) (3)
Từ (1), (2) và (3) suy ra \(P\ge\sqrt{3}\)
Hơn nữa, bằng kiểm tra trực tiếp ta thấy \(P\ge\sqrt{3}\) khi x=0
Vậy min P=\(\sqrt{3}\)
Ta có:
\(\left(\frac{1}{4}\right)^{-\frac{3}{2}}=8\) ;
\(2\left(\frac{125}{27}\right)^{-\frac{2}{3}}=2.\frac{9}{25}=\frac{18}{25}\) ;
\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=2\Rightarrow2^{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}}=2^2=4\)
\(\Rightarrow M=8-\frac{18}{25}+4=4\frac{18}{25}\)
Ta có \(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)
Nên \(B=2^{2\left(-\frac{3}{2}\right)}-2\left(\frac{5}{3}\right)^{3\left(-\frac{2}{3}\right)}+2^2=2^3-2\left(\frac{3}{5}\right)^2+4=\frac{282}{25}\)
Ta có :
\(M=\frac{7\ln\left(\sqrt{2}+1\right)^2-64\ln\left(\sqrt{2}+1\right)-50\ln\left(\sqrt{2}+1\right)^{-1}+2}{-3lg5-lg\left(10^{-1}.2^3\right)+6lg\left(10^{-\frac{1}{3}}.2^{\frac{2}{3}}\right)+4lg\left(10.5\right)}\)
\(=\frac{2}{lg5+1-3lg2-2+4lg2+4}=\frac{1}{2}\)
a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}=\frac{a^3-a}{1-a^2}=-a\)
Do đó : \(A=-\left(\pi-3\sqrt{2}\right)=3\sqrt{2}-\pi\)
b) Rút gọn B ta có :
\(B=\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)\left[\left(a^{\frac{1}{3}}\right)^2+\left(b^{\frac{1}{3}}\right)^2\right]=\left(a^{\frac{1}{3}}\right)^3+\left(b^{\frac{1}{3}}\right)^3=a+b\)
Do đó :
\(B=\left(7-\sqrt{2}\right)+\left(\sqrt{2}+3\right)=10\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\left(\frac{1}{16}\right)^{\frac{3}{4}}+2\left(\frac{8}{27}\right)^{\frac{2}{3}}\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+55+\frac{32}{3}\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\frac{197}{3}\)
\(A=243+\frac{197}{3}\)
\(A=\frac{926}{3}\)
Ta có \(A=3^{\frac{3}{2}.\frac{4}{3}}+\left(\frac{1}{2}\right)^{4.\frac{3}{4}}+2\left(\frac{2}{3}\right)^{3.\frac{2}{3}}=3^2+\left(\frac{1}{2}\right)^3+2\left(\frac{2}{3}\right)^2=\frac{721}{72}\)
Ta có : \(C=\left(2^4.10^{-4}\right)^{-\frac{1}{4}}+3.64^{\frac{1}{12}}-\left(9-4\sqrt{2}\right)-7\sqrt{2}=5+3\sqrt{2}-9-3\sqrt{2}=-4\)
\(\frac{\left(\sqrt{5}-1\right)\left(6+2\sqrt{5}\right)}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)^2}{\sqrt{5}-1}=4\)
a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)
b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)
\(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)
\(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số
Ta có : \(1+\left(\frac{x^4-1}{2x^2}\right)^2=\frac{x^8+2x^4+1}{4x^4}\) nên \(1+\sqrt{1+\left(\frac{x^4-1}{2x^2}\right)^2}=1+\frac{x^4+1}{2x^2}=\frac{\left(x^2+1\right)^2}{2x^2}\)
Do đó \(N=\frac{x^2+1}{x\sqrt{2}}\), thay \(x=\frac{1}{\sqrt{2}}\left(2^{\sqrt{2}}-2^{-\sqrt{2}}\right)\) vào ta được :
\(N=\frac{\frac{1}{2}\left(2^{\sqrt{2}}+2^{-\sqrt{2}}-2\right)+1}{\frac{1}{2}\left(2^{\sqrt{2}}+2^{-\sqrt{2}}\right)}=\frac{2^{2\sqrt{2}}+2^{-2\sqrt{2}}}{2^{\sqrt{2}}+2^{-\sqrt{2}}}\)