K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)

b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)

23 tháng 2 2022

Thanks

 

29 tháng 3 2017

a) \(x^2\) \(+2xy-3x^3\) \(+2y^3+3x^3-y^3\)

\(=x^2+2xy-\left(3x^3-3x^3\right)+\left(2y^3-y^3\right)\)

\(=x^2+2xy+y^3\)

Tại \(x=5;y=4\) thì:

\(5^2+2.5.4+4^3\)

\(=129\)

Vậy ....

b) Tại \(x=-1;y=-1\):

\(\left(-1\right).\left(-1\right)-\left(-1\right)^2.\left(-1\right)^2+\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

\(=1\)

Vậy ....

29 tháng 3 2017

a, x2+2xy-3x3+2y3+3x3-y3

= x2+2xy+(-3x3+3x3)+(2y3-y3)

= x2+2xy+y3

Thay x=5 và y=4 vào đa thức x2+2xy+y3, ta có

52+2.5.4+43=129

Vậy giá trị của đa thức x2+2xy+y3 tại x=5 và y=4 là 129

b, xy- x2y2+x4y4-x6y6+x8y8

= xy-(xy)2+(xy)4-(xy)6+(xy)8

Ta có: xy=(-1)(-1)=1

Thay xy vào đa thức xy-(xy)2+(xy)4-(xy)6+(xy)8 ta có :

1-12+14-16+18=1-1+1-1+1=1

Vậy giá trị của biểu thức xy- x2y2+x4y4-x6y6+x8y8 tại x=-1 và y=-1 là 1

19 tháng 4 2017

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3

Thay x = 5; y = 4 ta được:

A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy A = 129 tại x = 5 và y = 4.

b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.

Thay x = -1; y = -1 vào biểu thức ta được:

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.



22 tháng 1 2018

\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

=\(x^2+2xy+y^3\)

\(thếx=5;y=4\) \(ta\) \(có\)

= \(5^2+2.5.4+4^3\)

= 25 + 40 + 64

=129

b.

\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)

thế \(x=-1;y=-1\) ta có:

(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

= 1 - 1.1 +1.1 - 1.1 +1.1

= 1-1+1-1+1

= 1

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.Trước hết ta thu gọn đa thứcA = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3 Thay x = 5; y = 4 ta được:A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.Vậy A = 129 tại x = 5 và y = 4.b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.Thay x = -1; y = -1 vào biểu thức ta được: M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8 = 1 -1 + 1 - 1+ 1 = 1. Tải xuống 0

5 tháng 8 2020

a) Ta có : \(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)\)

\(=x^2+2xy+y^3\)

Thay x = 5,y = 4 vào đa thức trên ta có : \(x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)

b) Thay \(x=-1,y=-1\) vào đa thức trên ta có :

(-1)(-1) - (-1)2(-1)2 + (-1)4(-1)4 - (-1)6(-1)6 + (-1)8(-1)8

= 1 - 1 + 1 - 1 + 1 =1

a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)

\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)

P=\(A+B=x^2y^2-x^2-3\)

\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)

b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)

12 tháng 3 2022

a, bậc 6 

b, bậc 6 

c, bậc 12 

d, bậc 9 

e, bậc 8 

13 tháng 4 2022

huhu

4 tháng 3 2020

Rút gọn A trước khi tính :

\(A=\left(\frac{7}{2}x^4y^3-\frac{1}{3}x^4y^3\right)+\left(8x^2y^5-5x^2y^5\right)-\left(6y+\frac{1}{2}y\right)\)

\(=\frac{19}{6}x^4y^3+3x^2y^5-\frac{13}{2}y\)

Thay \(x=-2,y=\frac{3}{4}\) vào A có :

\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{13}{2}\cdot\frac{3}{4}\)

\(=\frac{171}{8}+\frac{729}{8192}-\frac{39}{8}\approx16,6\)

:)) Số xấu ....

4 tháng 3 2020

Xét biểu thức A, ta suy ra:

\(A=\frac{19}{6}x^4y^3+3x^2y^5-\frac{-13}{2}y\)

Tại x=-2 và y=3/4 thì:

\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{-13}{2}\cdot\frac{3}{4}\)

(phần này bạn tự tính)

\(\)

a: C=A-B

\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)

\(=x^3+3x^2y+3xy^2+y^3\)

D=A+B

\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)

\(=9x^3-9x^2y+5xy^2+y^3\)

bậc của C là 3

bậc của D là 3

b: Thay x=0 và y=-2 vào D, ta được:

\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)

\(=0-0+0-8=-8\)

c: Thay x=-1 và y=-1 vào C, ta được:

\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)

=-8

8 tháng 6 2020

\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)

\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)

\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)

Xét bậc của từng hạng tử

-2x6y có bậc là 7

-7/2x4y3 có bậc là 7

-2y7 có bậc là 7 

=> Bậc của M = 7

Thay x = 1 , y = -1 vào M ta được : 

\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)

\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)

\(M=2+\frac{7}{2}+2+9\)

\(M=\frac{33}{2}\)

Vậy giá trị của M = 33/2 khi x = 1 , y = -1

8 tháng 6 2020

Ta có M = (3x6y - 5x6y) + (1/2.x4y3 - 4.x4.y3) - (4y7 + 2y7) + (11 - 2)

               = -2x6y - 3,5x4y3 - 2y7 + 9

Bậc của đa thức M là 7 

b) M(1 ; -1) = -2.16.(-1) - 3,5.14.(-1)3 - 2.(-1)7 + 9

                   = 2 + 3,5 + 2 + 9 = 16,5