Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
hok tốt
=>3D =1.2.3 + 2.3.3 + 3.4.3 + ..... + 99.100 .3
=> 3D = 1.2.3 - 2.3. ( 4-1) + 3.4. (5-2) + ... + 98.99 (100 - 97 ) + 99 . 100 . ( 101-98)
=> 3D= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 98.99.100 -97.98.99 +99.100.101-98.99.100
=> 3D= 99.100.101
=> 3D= 999 900
D= 999 900 .3 = 333 300
=>3D =1.2.3 + 2.3.3 + 3.4.3 + ..... + 99.100 .3
=> 3D = 1.2.3 - 2.3. ( 4-1) + 3.4. (5-2) + ... + 98.99 (100 - 97 ) + 99 . 100 . ( 101-98)
=> 3D= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 98.99.100 -97.98.99 +99.100.101-98.99.100
=> 3D= 99.100.101
=> 3D= 999 900
D= 999 900 .3 = 333 300
3M = 1.2.3 + 2.3.(4-1) +..+ 99.100.(101-98)
3M = 1.2.3 + 2.3.4 - 1.2.3 + .... + 99.100.101 - 98.99.100
3M = 99.100.101 = 999900
M = 333300
Tính tổng:
1x2 + 2x3 + 3x4 + 4x5 +.............+ 99x100
Giải
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
A = 1 x 2 + 2 x 3 + ....... + 10 x 11
3A = 1 x 2 x 3 + 2 x 3 x 3 + ..........+ 10 x 11 x 3
3A = 1 x 2 x (3-0) + 2 x 3 x (4-1) + .......... + 10 x 11 x (12 -9)
3A = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ........... + 10 x 11 x 12 - 9 x 10 x 11
3A = (1 x 2 x 3 - 1 x 2 x 3) + ( 2 x 3 x 4 - 2 x 3 x 4) +............ + 10 x 11 x 12
3A = 10 x 11 x 12 = 1320
A = 1320 : 3 = 440
Gọi biểu thức trên là A, ta có :
A= 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101 A = 99x100x101 : 3 A = 333300
Ta có :
\(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+..............+\dfrac{1}{99.100}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)
\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
Ta có:\(A=\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9\left(1-\frac{1}{100}\right)\)
\(=9.\frac{99}{100}=\frac{891}{100}\)
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
Gọi biểu thức trên là S, ta có :
S = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
S x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
S x 3 = 99x100x101
S = 99x100x101 : 3
S = 333300