K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Ta có \(A=\left|2x-2015\right|+\left|2017-2x\right|+\left|x-1008\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

\(A\ge\left|2x-2015+2017-2x\right|+\left|x-1008\right|=2+\left|x-1008\right|\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2015\right)\left(2x-2017\right)\ge0\)\(\left|x-1008\right|=0\)

\(\Rightarrow\dfrac{2015}{2}\le x\le\dfrac{2017}{2}\)\(x=1008\) \(\Rightarrow x=1008\) (TM)

Vậy GTNN của A là 2 tại \(x=1008\)

9 tháng 3 2018

Thanks bạn nha

13 tháng 1 2017

\(A=\left|2017-2x\right|+\left|2015-2x\right|=\left|2017-2x\right|+\left|2x-2015\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|2017-2x+2x-2015\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi \(2017-2x\ge0;2x-2015\ge0\)

\(\Rightarrow x\le1008,5;x\ge1007,5\)

Vậy \(MIN_A=2\) khi \(1007,5\le x\le1008,5\)

10 tháng 4 2017

bạn lập bảng xét dấu ra
xét từng ĐK của PT
sau đó tìm GTNN

15 tháng 11 2015

A= / 2x - 2 /  + / 2015 -2x/  >/  / 2x-2 + 2015 -2x /  =  2013

A nhornhat = 2013 khi (2x-2).(2015-2x) >/0  =>   1</ x </ 2015

11 tháng 3 2022

\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)

\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)

\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)

\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)

\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)

Ta có: \(C=\left|2x-7\right|+\left|2x-5\right|+18\)

\(=\left|2x-7\right|+\left|5-2x\right|+18\ge\left|2x-7+5-2x\right|+18\)

\(\Leftrightarrow C\ge20\)

Vậy: Giá trị nhỏ nhất của C là 20 khi \(x=\dfrac{7}{2}\)

27 tháng 3 2021

Ta có:\(C=\left|2x-7\right|+\left|2x-5\right|=-18\)

\(\left\{{}\begin{matrix}\left|2x-7\right|>0\\\left|2x-5\right|>0\end{matrix}\right.\)

mà \(\left|2x-7\right|+\left|2x-5\right|=-18\)

\(\Rightarrow\)Cmin\(\Leftrightarrow\)2x-7=0 suy ra x=7/2

                2x-5=0 suy ra x=5/2