Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3x^2-4xy+y^2=3x-3y\)
\(\Leftrightarrow2x^2-2xy+\left(x^2-2xy+y^2\right)=3\left(x-y\right)\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)^2-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+x-y-3\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x-y-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\3x-y=3\end{cases}}\)
Vì x và y là 2 số thực phân biệt nên TH x=y không xảy ra\(\Rightarrow3x-y=3\)
Lại có: \(9x^2-6xy+y^2+y-3x+4=\left(3x-y\right)^2+y-3x+4\)
\(=\left(3x-y\right)^2-\left(3x-y\right)+4\)
Ta thay \(3x-y=3\)vào biểu thức trên:
\(\Rightarrow\left(3x-y\right)^2-\left(3x-y\right)+4=3^2-3+4=9+1=10\)
Vậy giá trị cần tìm của biểu thức đó là 10.
Có: \(3x^2+3y^2=10xy\)
\(\Leftrightarrow3x^2-9xy-xy+3y^2=0\)
\(\Leftrightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)
\(\Leftrightarrow\left(x-3y\right)\left(3x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3y=0\\3x-y=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3y\left(KTM:y>x\right)\\3x=y\left(tm\right)\end{cases}}\)
Với \(3x=y\) , ta có: \(K=\frac{x+y}{x-y}=\frac{x+3x}{x-3x}=\frac{4x}{-2x}=-2\)
K2= (\(\frac{X+Y}{X-Y}\))2 = \(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}\)= \(\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)
= \(\frac{3x^2+6xy+3y^2}{3x^2-6xy+3y^2}\)= \(\frac{10xy+6xy}{10xy-6xy}\)= \(\frac{16xy}{4xy}\)= 4
=> K = -2 hoặc 2
mà y>x>0 nên K =\(\frac{x+y}{x-y}\)<0
=> K = -2
a) ( 3x3 + 4x2y) : x2 - ( 10xy + 15y2) : (5y)
= ( 3x + 4y) - ( 2x + 3y)
= 7xy - 5xy
thay x = 2,y= -5 vào biểu thức,ta có:
{7.2.(-5)} - { 7.2.(-5)} = -70b) (3x4 + 1/3x2
a) 2x-5y+4y+2x
=4x+y
Tai x=3 y=-12 thi
4x3+(-12)=12-12=0
b)3x+4y-2x-3y
a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)
\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)
\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)
\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)
\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)
\(=-12x^3+16x^2y-7xy^2\)
\(\left(x-2\right)^2+y^2=0\)
mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)
nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)
=>x=2 và y=0
Thay x=2 và y=0 vào F, ta được:
\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)
\(=-12\cdot2^3\)
\(=-12\cdot8=-96\)
b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=x^3+y^3+3\left(8x^3-y^3\right)\)
\(=x^3+y^3+24x^3-3y^3\)
\(=25x^3-2y^3\)
Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)
Thay x=5 và y=-3 vào G, ta được:
\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)
\(=25\cdot125-2\cdot\left(-27\right)\)
\(=3125+54=3179\)
c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)
\(=x^3+27y^3+27x^3-y^3\)
\(=28x^3-26y^3\)
Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)
Thay x=2 và y=1 vào H, ta được:
\(H=28\cdot2^3-26\cdot1^3\)
\(=28\cdot8-26\)
=198