Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc xOy = xOz - yOz
vì xOy và yOz là 2 góc kề bù nên có tổn là 180*
Nên
xOy = xOz - yOz
xOy = 180 - 64
xOy = 116
góc mOy = mOx = xOy : 2 (vì Om là tia phân giác của góc xOy)
=> mOy = mOx = 116 : 2 = 58
góc yOn = nOz = yOz : 2 (vì On là tia phân giác của góc yOz)
=> yOn = nOz = 64 : 2 = 32
chứng minh Om vuông góc On
ta có :
mOy + yOn = mOn
58 + 32 = 90
=> Om vuông góc On
Vì góc yOz và góc xOy là hai góc kề bù nên Oz và Ox cùng nằm trên một đường thẳng zx (1)
Tương tự ta có: Ot và Oy cùng nằm trên một đường thẳng
\(\widehat{xOt}\) và \(\widehat{yOz}\) là hai góc đối đỉnh
⇒ \(\widehat{O_2}\) = \(\dfrac{1}{2}\) \(\widehat{xOt}\) = \(\dfrac{1}{2}\) \(\widehat{yOz}\) = \(\widehat{O_5}\)
Mặt khác ta có: \(\widehat{O_2}\) + \(\widehat{O_1}\) + \(\widehat{O_6}\) = 1800 (gt)
⇒ \(\widehat{O_1}\) + \(\widehat{O_6}\) + \(\widehat{O_5}\) = 1800
⇒ Om và On cùng thuộc một đường thẳng mn (2)
Kết hợp (1) và (2) ta có: góc zOn và góc xOm là hai góc đối đỉnh
a) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz nằm về hai phía đối với đường thẳng chứa tia Oy nên hai góc xOy và yOz là hai góc kề nhau. Hơn nữa, hai góc xOy và yOz có tổng bằng góc xOz =180 độ nên hai góc xOy và yOz là hai góc bù nhau.
Vậy hai góc xOy và yOz là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz là hai tia đối nhau nên hai góc xOy và yOz là hai góc kề bù.
b) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot nằm về hai phía đối với đường thẳng chứa tia Oz nên hai góc yOz và zOt là hai góc kề nhau. Hơn nữa, hai góc yOz và zOt có tổng bằng góc xOz =180 độ nên hai góc yOz và zOt là hai góc bù nhau.
Vậy hai góc yOz và zOt là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot là hai tia đối nhau nên hai góc yOz và zOt là hai góc kề bù.
c) Do
\(\begin{array}{l}\widehat {xOy} + \widehat {yOz} = \widehat {xOz} = 180^\circ ;\\\widehat {yOz} + \widehat {zOt} = \widehat {yOt} = 180^\circ \end{array}\)
Vậy \(\widehat {xOy} + \widehat {yOz} = \widehat {yOz} + \widehat {zOt}\)
\( \Rightarrow \widehat {xOy} = \widehat {zOt}\)
Chú ý: Ta có thể dùng dấu hiệu sau: 2 góc kề bù khi có chung đỉnh, chung một cạnh, 2 cạnh còn lại là 2 tia đối nhau.
ta có : oa là phân giác của góc xoy
ob là phân giác của góc yoz
=) góc xoa= aoy
góc yob = góc boz
=) góc boy + góc yoa = góc zob + góc xoa
(=) góc aob = góc góc zob + góc xoa
mà góc boy + góc yoa + góc góc zob + góc xoa = 180 độ
=) góc aob = góc góc zob + góc xoa = 180 độ /2 = 90 độ
=) góc aob vuông =) oa vuông góc vs ob
chúc bn học tốt
Góc xOy và yOz là hai góc kề bù nên xOy + yOz = 180°
xOy - yOz = 50°
xOy + yOz - (xOy - yOz) = 180° - 50°
2yOz = 130°
yOz = 65°
xOy = 180° - yOz = 180° - 65° = 115°
Vậy góc xOy = 115° và yOz = 65°
Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)
=>\(\widehat{yOz}+125^0=180^0\)
=>\(\widehat{yOz}=55^0\)