Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(23\frac{11}{15}-26\frac{13}{20}\right)}{12^2+5^2}\cdot\frac{1-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}}{3^2.13.2-13.5}-\frac{19}{37}\)
\(A=\frac{\left(23+\frac{11}{15}-26+\frac{13}{20}\right)}{144+25}\cdot\frac{1-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}}{9.13.2-13.5}-\frac{19}{37}\)
\(A=\frac{\left(23+26+\frac{11}{15}-\frac{13}{20}\right)}{169}\cdot\frac{1-\left(\frac{1}{5}-\frac{1}{6}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-\left(\frac{1}{7}-\frac{1}{8}\right)}{13.\left(9.2-5\right)}-\frac{19}{37}\)
\(A=\frac{49+\frac{44}{60}-\frac{39}{60}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{7}-\frac{1}{7}+\frac{1}{8}}{13.13}-\frac{19}{37}\)
\(A=\frac{49+\frac{1}{20}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{8}}{169}-\frac{19}{37}\)
\(A=\frac{49\frac{1}{20}}{169}\cdot\frac{\frac{4}{5}+\frac{5}{40}}{169}-\frac{19}{37}\)
\(A=\frac{981}{169}\cdot\frac{\frac{32}{40}+\frac{5}{40}}{169}-\frac{19}{37}\)
\(A=\frac{981}{169}\cdot\frac{\frac{37}{40}}{169}-\frac{19}{37}\)
\(A=\frac{981.\frac{37}{40}}{169^2}-\frac{19}{37}\)
\(A=\frac{\frac{36297}{40}}{28561}-\frac{19}{37}\)
\(A=\frac{907,425}{28561}-\frac{19}{37}\)
\(A=\frac{33574,725}{1056757}-\frac{542659}{1056757}\)
\(A=\frac{-509084,275}{1056757}=-0,04604282...\)
Mik chỉ làm đc thế này thôi, ôn thi học kì II tốt nha bạn!
A) \(\frac{1}{2}\cdot\left(\frac{2}{9}+\frac{3}{7}-\frac{5}{27}\right)\)
\(=\frac{1}{2}\cdot\frac{1}{2}\)
\(=\frac{1}{4}\)
B) \(\left(\frac{-5}{28}+1.75+\frac{8}{35}\right):\left(-3\frac{9}{20}\right)\)
\(=\left(\frac{-5}{28}+\frac{7}{4}+\frac{8}{35}\right):\frac{-69}{20}\)
\(=\frac{14}{5}:\frac{-69}{20}\)
\(=\frac{-56}{69}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}\)
\(=\frac{1.2.3...98}{2.3.4...99}\)
\(=\frac{1}{99}\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{2}{3}\right)\times...\times\left(1-\frac{1}{99}\right)\)
= \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{98}{99}\)
= \(\frac{1\times2\times3\times...\times98}{2\times3\times4\times...\times99}\)
= \(\frac{1}{99}\)
Ta có :
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{10^2}\right)\)
\(=\)\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}.....\frac{10^2-1}{10^2}\)
\(=\)\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{9.11}{10.10}\)
\(=\)\(\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4.....10.10}\)
\(=\)\(\frac{\left(1.2.3.....9\right).\left(3.4.5.....11\right)}{\left(2.3.4.....10\right).\left(2.3.4.....10\right)}\)
\(=\)\(\frac{11}{2.10}\)
\(=\)\(\frac{11}{20}\)
Chúc bạn học tốt ~
(1-1/2^2)(1-1/3^2)(1-1/4^2)....(1-1/10^2)
=3/4.8/9.15/16...99/100
Từ đó tính kết quả là ok
H = 2012 - 1 - ( \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+99}\))
= 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{\left(99+1\right).\left[\left(99-1\right):1+1\right]:2}\)
= 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\))
= 2011 - 2.( \(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\))
= 2011 - 2.(\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\))
= 2011 - 2.( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))
= 2011 - 2.(\(\frac{1}{2}-\frac{1}{100}\)) = 2011 - 2.\(\frac{49}{100}\)= 2011 - \(\frac{49}{50}\)= \(\frac{100501}{50}\)
\(H=2012-\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}\right)\)
\(=2012-\left(1+\frac{1}{2\left(2+1\right):2}+\frac{1}{3\left(3+1\right):2}+...+\frac{1}{99\left(99+1\right):2}\right)\)
\(=2012-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)
\(=2012-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2}{99.100}\right)\)
\(=2012-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2012-2\left(1-\frac{1}{100}\right)\)
\(=2012-2\cdot\frac{99}{100}\)
\(=2012-\frac{99}{50}\)
\(=\frac{100501}{50}\)