Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ :D=R
Ta có :\(lim_{x\rightarrow+\infty}\)=lim (-x3 +3x-1 )=+∞
\(lim_{x\rightarrow-\infty}\) =lim (-x3 +3x-1 ) =+∞
-> đồ thị hàm số ko có tiệm cận
lại có : y' =-3x2+x
y' =0 -> \(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{3}\end{array}\right.\)
bbt
| ||||
\(V=\dfrac{1}{3}\pi r^2h=\dfrac{1}{3}\pi.2^2.3=4\pi\)
Chọn B
Giải như sau:
Ta biết rằng \(d\left(u\left(x\right)\right)=u\left(x\right)'d\left(x\right)\)
\(\Rightarrow\int\frac{x}{2-x^2}dx=\frac{1}{2}\int\frac{d\left(x^2\right)}{2-x^2}=-\frac{1}{2}\int\frac{d\left(2-x^2\right)}{2-x^2}=-\frac{1}{2}ln\left|2-x^2\right|+c\)
P/s: Muốn tính nguyên hàm mà tử nhỏ hơn mẫu thứ nhất bạn có thể phan tích mẫu ra thành các nhân tử có bậc nhỏ như bậc của tử số, rồi từ đó đặt ẩn phụ hoặc tách ghép hợp lý. Thứ 2 là bạn có thể sử dụng phương pháp $d(u(x))=u(x)'dx$ để đưa ẩn về cùng một mối ( như cách mình giải bài này). Nói chung mình diễn đạt có thể không rõ ràng một chút nhưng chủ yếu bạn làm nhiều tìm tòi nhiều sẽ quen thôi :)
1 |
B |
6 |
B |
11 |
C |
16 |
A |
21 |
D |
2 |
C |
7 |
A |
12 |
A |
17 |
B |
22 |
D |
3 |
A |
8 |
B |
13 |
B |
18 |
C |
23 |
C |
4 |
B |
9 |
B |
14 |
A |
19 |
A |
24 |
A |
5 |
D |
10 |
C |
15 |
D |
20 |
D |
25 |
C |
1 + 1 =2
2 + 3 =5
4 + 4 =8
5 + 5 =10
12 + 12 =24
10 + 10 =20
(x+2)-3=5
(x+2)=3+5
(x+2)=8
x=8-2
x=5
k cho mình nha
x=6 ( mik tính thế nào ra thế nên có đúng hay sai mik cũng ko bt