Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2011 + 5 . [300- ( 18- 8)2]
= 2011 + 5. ( 300 - 102)
= 2011 + 5. 200
= 3011
b) Số số hạng trong tổng trên là:
( 99 - 1) ; 2 = 1 = 50 (số)
99 + 97 = … = 3 + 1
= ( 99 + 1) . 50 : 2
= 2500
c) Số số hạng trong tổngtrên là:
( 100 - 1) : 3 + 1 = 34 ( số)
100 + 97 + 94 + …+ 4 = 1
= ( 100 + 1) . 34 : 2=1717
d) 99 - 97 + 95 - 93 + … + 3 - 1
= 2 + 2 + 2 + … + 2
= 2. 25
= 50
e) 100 - 97 + 94 - …+ 4 - 1
= 3 + 3 + 3 + … + 3
= 3. 17
= 51
a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)
=>Sẽ có \(\dfrac{100}{2}=50\) cặp số
1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
b: Sửa đề: \(2-4+6-8+...+46-48+50\)
Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)
=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)
\(2-4+6-8+...+46-48+50\)
\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)
\(=50-2\cdot24=50-48=2\)
c: Đặt A=\(1+2-3+4+...+97+98-99+100\)
\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)
\(=4+12+...+196\)
Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)
Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)
Ta có:
A=2+2^2+2^3+2^4+.....+2^100
=> 2A=2^2+2^3+...+2^101
=> 2A-A=A=(2^2+2^3+...+2^101)-(2+2^2+2^3+2^4.....+2^100)
=> A=2^2+2^3+...+2^101-2-2^2-...-2^100
=> A=2^101-2
B=1+3+3^2+3^2+....+3^2009
=> 3B=3+3^2+3^2+....+3^2010
=> 3B-B=2B=3+3^2+3^2....+3^2010-1-3-3^2-3^2-....-3^2009
=> 2B=3^2010-1
=> B=(3^2010-1)/2
C=1+5+5^2+5^3+...+5^1998
=> 5C=5+5^2+5^3+...+5^1999
=> 5C-C=4C=5+5^2+5^3+...+5^1999-1-5-5^2-5^3-...-5^1998
=> 4C=5^1999-1
=> C=(5^1999-1)/4
D=4+4^2+4^3+...+4^n
=> 4D=4^2+4^3+...+4^n+1
=> 4D-D=3D=4^2+4^3+...+4^n+1 - 4-4^2-4^3-...-4^n
=> 3D=4^n+1 - 4
=> 3D=\(\frac{4^{n+1}-4}{3}\)
Ta có : \(A=2+2^2+2^3+.....+2^{100}\)
\(2A=2+2^2+2^3+.....+2^{101}\)
\(2A-A=2^{101}-2\)
\(A=2^{101}-2\)
4:
a: =4/15-2,9+11/15=1-2,9=-1,9
b: \(=-36,75+3,7-63,25+6,3=10-100=-90\)
c: \(=6,5+3,5-\dfrac{10}{17}-\dfrac{7}{17}=10-1=9\)
d: \(=\dfrac{13}{25}\left(-39,1-60,9\right)=\dfrac{13}{25}\left(-100\right)=-52\)
e: =-5/12-7/12-3,7-6,3=-1-10=-11
f: =2,8(-6/13-7/13)-7,2=-2,8-7,2=-10
a)\(2S=2\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(2S=2+1+...+\frac{1}{2^{99}}\)
\(2S-S=\left(2+1+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(S=2-\frac{1}{2^{100}}\)
phần b tương tự
a. S=1+1/2+1/2^2+1/2^3+...+1/2^100
2S=2+1+1/2+1/2^2+...+1/2^99
2S-S=(2+1+1/2+1/2^2+...+1/2^99)-(1+1/2+1/2^2+1/2^3+...+1/2^100)
S=2-1/2^100
S=2^101-1/2^100