K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

đặt \(\sqrt[3]{2-x}=a;\sqrt[3]{7+x}=b\rightarrow a^3+b^3=9\)

thay vào pt ta đc

\(a^2+b^2-ab=\dfrac{\left(a^3+b^3\right)}{3}\)

\(a^2+b^2-ab=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{3}\)

do \(a^2+b^2-ab>0\)nên

a+b=3

\(\rightarrow\sqrt[3]{2-x}+\sqrt[3]{7+x}=3\)

\(\left(\sqrt[3]{2-x}+\sqrt[3]{7+x}\right)^3=27\)

\(2=\sqrt[3]{\left(7+x\right)\left(2-x\right)}\)

0=6-5x-x^2 đến đấy khá đơn giản rồi nhỉ

(x-1)(x+6)=0

vậy pt có nghiệm x=1;x=-6

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:

Đặt \(\sqrt[3]{2-x}=a; \sqrt[3]{7+x}=b(*)\). Ta có hệ phương trình:

\(\left\{\begin{matrix} a^3+b^3=9\\ a^2+b^2-ab=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (a+b)(a^2-ab+b^2)=9\\ a^2+b^2-ab=3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2-ab=3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-3ab=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)

Theo định lý Viete đảo thì $a,b$ là nghiệm của pt:

\(x^2-3x+2=0\), do đó \((a,b)=(1,2)\) hoặc \((a,b)=(2,1)\)

Thay vào $(*)$ suy ra $x=1$ hoặc $x=-6$

NV
2 tháng 3 2021

1. ĐKXĐ:...

\(8-2x-\dfrac{2}{x}-2\sqrt{2-x^2}-2\sqrt{2-\dfrac{1}{x^2}}=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\dfrac{1}{x^2}-\dfrac{2}{x}+1\right)+\left(2-x^2-2\sqrt{2-x^2}+1\right)+\left(2-\dfrac{1}{x^2}-2\sqrt{2-\dfrac{1}{x^2}}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\dfrac{1}{x}-1\right)^2+\left(\sqrt{2-x^2}-1\right)^2+\left(\sqrt{2-\dfrac{1}{x^2}}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x}-1=0\\\sqrt{2-x^2}-1=0\\\sqrt{2-\dfrac{1}{x^2}}-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

NV
2 tháng 3 2021

2.

ĐKXĐ:...

Ta có:

\(VT=x\sqrt{x}+1.\sqrt{12-x}\le\sqrt{\left(x^2+1\right)\left(x+12-x\right)}=2\sqrt{3\left(x^2+1\right)}\)

Dấu "=" xảy ra khi và chỉ khi: \(x\sqrt{12-x}=\sqrt{x}\)

\(\Leftrightarrow x^3-12x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6-\sqrt{35}\\x=6+\sqrt{35}\end{matrix}\right.\)

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu