Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 22009 + 22008 + ... + 21 + 20. Khi đó, M = 22010 - A
Ta có 2A = 22010 + 22009 + ... + 22 + 21.
Suy ra 2A - A = 22010 - 20 = 22010 - 1.
Do đó M = 22010 - A = 22010 - (22010 - 1) = 22010 - 22010 + 1 = = 1.
M=2^2010-(2^2009+2^2008+2^2007+...+2^1+2^0)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
vậy M=1
A=2(1+2)+2^3(1+2)+...+2^2009(1+2)
=3(2+2^3+...+2^2009) chia hết cho 3
A=2(1+2+2^2)+2^4(1+2+2^2)+...+2^2008(1+2+2^2)
=7(2+2^4+...+2^2008) chia hết cho 7
\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)
\(M=\frac{2^2-1^2}{1^22^2}+\frac{3^2-2^2}{2^23^2}+\frac{4^2-3^2}{3^24^2}+...+\frac{2010^2-2009^2}{2009^22010^2}\)
\(M=\frac{2^2}{1^22^2}-\frac{1^2}{1^22^2}+\frac{3^2}{2^23^2}-\frac{2^2}{2^23^2}+\frac{4^2}{3^24^2}-\frac{3^2}{3^24^2}+...+\frac{2010^2}{2009^22010^2}-\frac{2009^2}{2009^22010^2}\)
\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}\)
\(M=1-\frac{1}{2010^2}< 1\)
Vậy \(M< 1\)
Chúc bạn học tốt ~
M=2^2010-(2^2009+2^2008+2^2007+...+2^1+2^0)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
vậy M=1
đúng mjk với nha
ĐẶt A = 2^0 + 2^1 +.. + 2^2009
2A = 2^ 1 + 2^2 +.... + 2^2009 +2 ^2010
2A - A = 2^1 + 2^2 + . ... + 2^2009 +2^2010 - 2 ^0 - 2^1 - 2^2 -..-2^3009
A = 2^2010 - 2^0 = 2^2010 - 1
M = 2^2010 - A = 2^2010 - (2^2010 - 1) = 2^2010 - 2^2010 +1 = 1