Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\dfrac{3^{10}.11+3^9.15}{3^9.2^4}=\dfrac{3^9.33+3^9.15}{3^9.2^4}\)
\(=\dfrac{3^9\left(33+15\right)}{3^9.16}\)
\(=\dfrac{48}{16}=3\)
\(A=\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{3^{10}\cdot\left(11+5\right)}{3^9\cdot16}=\dfrac{3^{10}\cdot16}{3^9\cdot16}=3\)
\(B=\dfrac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\dfrac{2^{10}\cdot\left(13+65\right)}{2^8\cdot2^2\cdot26}=\dfrac{2^{10}\cdot78}{2^{10}\cdot26}=3\)
\(C=\dfrac{72^3\cdot54^2}{108^4}=\dfrac{\left(2^3\cdot3^2\right)^3\cdot\left(2\cdot3^3\right)^2}{\left(3^3\cdot2^2\right)^4}\\ =\dfrac{2^9\cdot3^6\cdot2^4\cdot3^6}{3^{12}\cdot2^8}=\dfrac{2^{13}\cdot3^{12}}{3^{12}\cdot2^8}=2^5=32\)
\(D=\dfrac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\dfrac{11\cdot3^{29}-\left(3^2\right)^{15}}{2^2\cdot3^{28}}=\dfrac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}\\ =\dfrac{3^{29}\cdot\left(11-3\right)}{2^2\cdot3^{28}}=\dfrac{3^{29}\cdot8}{4\cdot3^{28}}=3\cdot2=6\)
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
Q=(2^9.3+2^9.5):2^12
Đặt A=2^9.3+2^9.5
A=2^9.(3+5)
A=2^9.8
Mặt khác:8=2^3
=>A=2^9.2^3
A=2^12
Theo đề bài ta có Q=(2^9.3+2^9.5):2^12
=>Q=2^12:2^12
Q=1
Nhìn dài dòng thế thôi chứ đơn giản lắm.Nếu thấy đúng thì cho mình nhé!
\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}+\frac{2^{13}+2^5}{2^{10}+2^2}=11\)
-x + 20 = - (-15) - (8) + 13
-x + 20 = 15 - 8 + 13
-x + 20 = 7 + 13
- x + 20 = 20
x = 20 - 20
x = 0
-(-10) + x = -13 + (-9) + (-6)
10 + x = -13 - 9 - 6
10 + x = -28
x = -28 - 10
x = -38
N=1/2+1/22+...+1/210
2N=1+1/2+...+1/29
2N-N=1-1/210=1-1/1024=1023/1024
Giải:
N=1/2+1/22+1/23+...+1/29+1/210
2N=1+1/2+1/22+...+1/28+1/29
2N-N=(1+1/2+1/22+...+1/28+1/29)-(1/2+1/22+1/23+...+1/29+1/210)
N=1-1/210=1023/1024
Chúc bạn học tốt!
a)\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{3.16}{2^4}=\frac{3.2^4}{2^4}=3\)
b)\(B=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.2^3.13}=\frac{2^{10}.78}{2^{11}.13}=3\)
c)\(C=\frac{4^9.36+64^4}{16^4.100}=\frac{2^{18}.2^2.3^2+2^{24}}{2^{16}.2^2.5^2}=\frac{2^{20}\left(3^2+2^4\right)}{2^{18}.5^2}=\frac{2^2.25}{25}=4\)
N=\(\dfrac{2^{10}.13+2^9+130}{2^8.104}\)
N=\(\dfrac{13312+642}{26624}\)
N=\(\dfrac{3954}{26624}\)=\(\dfrac{6977}{13312}\)
ko có cách tính nhanh hơn à bạn