Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
D=\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+\frac{25}{50}+\frac{36}{60}+\frac{49}{70}+\frac{64}{80}+\frac{81}{90}\)
=> D=\(\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+\frac{4}{10}+\frac{5}{10}+\frac{6}{10}+\frac{7}{10}+\frac{8}{10}+\frac{9}{10}\)
=> D = \(\frac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)
=> D =\(\frac{45}{10}=4,5\)
\(\frac{1}{5}+\frac{4}{10}+\frac{9}{15}+\frac{16}{20}+1+\frac{36}{30}+\frac{49}{35}+\frac{64}{40}+\frac{81}{45}\)
\(=\left(\frac{1}{5}+\frac{81}{45}\right)+\left(\frac{4}{10}+\frac{49}{35}\right)+\left(\frac{9}{15}+\frac{49}{35}\right)+\left(\frac{16}{20}+\frac{36}{30}\right)+1\)
\(=2+2+2+2+1\)
\(=2\times4+1\)
\(=9\)
~ Hok tốt ~
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+....+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)
\(=\frac{\left(1+2+3+.....+9\right)}{10}\)
\(=\frac{45}{10}=\frac{9}{2}\)
\(S=\frac{1}{10}+\frac{2^2}{20}+\frac{3^2}{30}+....+\frac{9^2}{90}=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{45}{10}=\frac{9}{2}\)
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+\frac{16}{40}+\frac{25}{50}\) \(+\frac{36}{60}+\frac{49}{70}+\frac{64}{80}+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{1}{5}+\frac{3}{10}+\frac{2}{5}+\frac{1}{2}+\frac{3}{5}+\frac{7}{10}+\frac{4}{5}+\frac{9}{10}\)
\(=\left(\frac{1}{10}+\frac{9}{10}\right)+\left(\frac{1}{5}+\frac{4}{5}\right)+\left(\frac{3}{10}+\frac{7}{10}\right)+\left(\frac{2}{5}+\frac{3}{5}\right)+\frac{1}{2}\)
\(=1+1+1+1+0,5\)
\(=4+0,5\)
\(=4,5\)
Ta có: \(\dfrac{1}{5}+\dfrac{4}{10}+\dfrac{9}{15}+\dfrac{16}{20}+\dfrac{25}{25}+\dfrac{36}{30}+\dfrac{49}{35}+\dfrac{64}{40}+\dfrac{81}{45}\)
\(=\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}+\dfrac{5}{5}+\dfrac{6}{5}+\dfrac{7}{5}+\dfrac{8}{5}+\dfrac{9}{5}\)
\(=\dfrac{45}{5}=9\)
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+.....+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)
\(=\frac{\left(9+1\right)\times\left(9+1-1\right):2}{10}\)
\(=\frac{10\times9:2}{10}\)
\(=\frac{45}{10}=4,5\)
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+...+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)
\(=\frac{\left(9+1\right)\left(9-1+1\right):2}{10}\)
\(=\frac{10.9:2}{10}=4,5\)
=\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+...+\frac{81}{90}\)
= \(\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...\frac{9}{10}\)
= \(\frac{\left(9+1\right)\times\left(9-1+1\right):2}{10}\)
= \(\frac{10\times9:2}{10}\)
= 4,5
ĐS:.........................
#Châu's ngốc