Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D =1/99 -1/99.98-1/98.97-...-1/3.2-1/2.1
=1/99-(1/99.98+1/98.97-...-1/3.2+1/2.1)
=1/99-(1/1.2+1/2.3+1/3.4+...+1/98.99)
=1/99-(1/1-1/2+1/2-1/3+1/3-1/4+1/4-...+1/98-1/99)
=1/99-(1/1-1/99)
=1/99-98/99
=-97/99
\(P=\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{98.99}\right)\)
\(=\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\frac{98}{99}\)
\(=-\frac{97}{99}\)
Vậy \(P=-\frac{97}{99}\)
P=-1/1.2-1/2.3-...-1/98.99-1/99
P=-(1/1.2+1/2.3+...+1/98.99+1/99)
P=-1
\(P=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}\right)-\left(\frac{1}{98}-\frac{1}{97}\right)-\left(\frac{1}{97}-\frac{1}{96}\right)-...-\left(\frac{1}{3}-\frac{1}{2}\right)-\frac{1}{2}\)
\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-\frac{1}{97}+\frac{1}{96}-...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}\)
\(=0\)
ĐS: \(0\)
=\(\frac{1}{99}\)-\(\frac{1}{99}\)-\(\frac{1}{98}\)-\(\frac{1}{98}\)-.................-\(\frac{1}{3}\)-\(\frac{1}{2}\)-\(\frac{1}{2}\)-1
=\(\frac{1}{99}\)-(\(\frac{1}{99}\)+\(\frac{1}{98}\)+..............+\(\frac{1}{3}\)+\(\frac{1}{2}\)+\(\frac{1}{2}\)+1)
=\(\frac{1}{99}\)-......
hình như sai rùi????
\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}+\frac{1}{100}-1=\frac{1}{50}-1=-\frac{49}{50}\)
C= \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
= \(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\) ( viet nguoc lai cho de nhin)
= \(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
= \(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
= \(-\frac{49}{50}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - .... - 1/3.2 - 1/2.1
\(C=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{2.1}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}+\frac{1}{98}-\frac{1}{99}+...+1-\frac{1}{2}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{2}\right)=-\frac{1}{2}\)
A = 1/99 - 1/99.98 - 1/98.97 - ............... - 1/3.2 - 1/2.1
\(A=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(B=\frac{1}{99.98}+\frac{1}{97.87}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
\(B=1-\frac{1}{99}\)
\(B=\frac{98}{99}\)
\(\Rightarrow A=\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-...-\dfrac{1}{2.1}\\ =\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\dfrac{99}{100}\\ =\dfrac{-98}{100}\\ =-\dfrac{49}{100}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=-\dfrac{49}{50}\)
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-....-\frac{1}{2.1}\)
=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left(1-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\frac{98}{99}\)
=\(\frac{-97}{99}\)
\(\frac{-97}{99}\)