Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right).n.\left(n+1\right)\)
\(4B=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)
\(B=\frac{\left(n-1\right).n.\left(n+1\right)\left(n+2\right)}{4}\)
Tham khảo nhé~
Ta có: \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=4.\left[1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right)n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\)\(\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)
Vậy \(B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)
\(10^{26}\) và \(9^{10}\)
Có: \(10>9\)
\(26>10\)
\(\Rightarrow10^{26}>9^{10}\)
C2: \(10^{26}=10^{10}.10^{16}\)
Vì: \(10^{10}>9^{10}\)
\(\Rightarrow10^{10}.10^{16}>9^{10}\)
\(\Rightarrow10^{26}>9^{10}\)
C1 10 ^ 26 = 100 ^ 25 = (100^5)^5 = 10000000000 ^ 5 > 81 ^ 5 = 9 ^10 => 10 ^ 26 > 9 ^ 10
C2 10 ^ 26 > 10^10 > 9^ 10 => 10 ^ 26 > 9 ^ 10
Bài làm
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\left(1-\frac{1}{100}\right)\)
=\(\left(\frac{100}{100}-\frac{1}{100}\right)\)
=\(\frac{99}{100}\)
Chúc bạn học tốt
Typing Test là phần mềm dùng để luyện gõ bàn phím nhanh bằng 10 ngón tay thông qua một số trò chơi.
2. Khởi động phần mềm.
Cách 1: Nháy đúp chuột vào biểu tượng
trên nền màn hình windows.
Cách 2: Nháy chuột vào StartProgram
Typing Test Free Typing Test.
Trường THCS
Bổ túc
Luyện gõ phím nhanh bằng typing test
*với ab>ac
vì trung tuyến bằng 1/2 cạnh huyền nên am=bm=cm=1/2 bc=41.=>bc=82.
Theo định lý pytago, mh^2=am^2-ah^2.
=>mh=9.
=>bh=32.
Theo định lý Pytago =>ab^2=ah^2+bh^2 =>ab=8\(\sqrt{41}\).
tương tự ta có ac=\(10\sqrt{41}\)
\(74\left(-41\right)-41.26=\left(74+26\right)\left(-41\right)=100.\left(-41\right)=-4100\)
\(74.\left(-41\right)-41.26\)
\(=-\left(74.41-41.26\right)\)(Đặt dấu trừ bên ngoài thì tất cả hạng tử ở trong đều mang dấu cộng)
\(=-\left[41.\left(74+26\right)\right]\)
\(=-\left(41.100\right)\)
\(=-4100\)