Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 22009 - 22008 - 22007 - ... - 22 - 2 - 1
A = 22009 - (22008 + 22007 + ... + 22 + 2 + 1)
Đặt B = 22008 + 22007 + ... + 22 + 2 + 1
2B = 22009 + 22008 + ... + 23 + 22 + 2
2B - B = (22009 + 22008 + ... + 23 + 22 + 2) - (22008 + 22007 + ... + 22 + 2 + 1)
B = 22009 - 1
=> A = 22009 - (22009 - 1) = 22009 - 22009 + 1 = 0 + 1 = 1
A = 22009 - 22008 - 22007 - .... - 22 - 2 - 1
= 22009 - ( 22008 + 22007 + .... + 22 + 2 + 1 )
Đặt B = 1 + 2 + 22 + .... + 22008
2B = 2(1 + 2 + 22 + .... + 22008 )
= 2 + 22 + 23 + .... + 22009
2B - B = ( 2 + 22 + 23 + .... + 22009 ) - ( 1 + 2 + 22 + .... + 22008 )
B = 22009 - 1
=> A = 22009 - ( 22009 - 1 ) = 1
Vậy A = 1
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
a) \(\dfrac{2}{5}+\dfrac{4}{5}\times\dfrac{5}{2}\)
\(=\dfrac{2}{5}+\dfrac{4\times5}{5\times2}\)
\(=\dfrac{2}{5}+\dfrac{4}{2}\)
\(=\dfrac{2}{5}+2\)
\(=\dfrac{2}{5}+\dfrac{10}{5}\)
\(=\dfrac{12}{5}\)
b) \(\dfrac{2008}{2009}-\dfrac{2009}{2008}+\dfrac{1}{2009}+\dfrac{2007}{2008}\)
\(=\left(1-\dfrac{1}{2009}\right)-\left(1+\dfrac{1}{2008}\right)+\dfrac{1}{2009}+\left(1-\dfrac{1}{2008}\right)\)
\(=1-\dfrac{1}{2009}-1-\dfrac{1}{2008}+\dfrac{1}{2009}+1-\dfrac{1}{2008}\)
\(=\left(1-1+1\right)-\left(\dfrac{1}{2009}-\dfrac{1}{2009}\right)-\left(\dfrac{1}{2008}+\dfrac{1}{2008}\right)\)
\(=1-\dfrac{2}{2008}\)
\(=\dfrac{2008}{2008}-\dfrac{2}{2008}\)
\(=\dfrac{2006}{2008}\)
\(=\dfrac{1003}{1004}\)
a: =2/5+4/2
=2/5+2
=12/5
b: \(=1-\dfrac{1}{2009}-1-\dfrac{1}{2008}+\dfrac{1}{2009}+1-\dfrac{1}{2008}\)
\(=1-\dfrac{2}{2008}=1-\dfrac{1}{1004}=\dfrac{1003}{1004}\)