K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+....+\frac{4}{2014.2016}\)

\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2014.2016}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{2014}-\frac{1}{2016}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)

\(=2.\frac{1007}{2016}=\frac{1007}{1008}\)

4 tháng 8 2016

\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2014.2016}\)

\(A=\frac{4}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2014.2016}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{2016}\right)=2.\frac{1007}{2016}=\frac{1007}{1008}\)

K:2=2/2.4+2/4.6+2/6.8+...+2/2008.2010

     =1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010

     =1/2-1/2010

     =502/1005

  K=502/1005.2

    =1004/1005

F=1/3.6+1/6.9+1/9.12+...+1/30.33

3F=3/3.6+3/6.9+3/9.12+...+1/30.33

    =1/3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33

    =1/3-1-33

    =10/33

  F=10/33:3

    =10/99

Bn sai câu K = 4/2.4 + 4/4.6 + 4/6.8 +....+ 4/2008.2010 

21 tháng 8 2016

\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)

\(\Rightarrow A=4\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{2008.2010}\right)\)

\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\right)\right]\)

\(\Rightarrow A=4\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2010}\right)\right]\Rightarrow A=4\left(\frac{1}{2}.\frac{502}{1005}\right)\Rightarrow A=4.\frac{251}{1005}\Rightarrow A=\frac{1004}{1005}\)

21 tháng 8 2016

\(B=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)

\(\Rightarrow B=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+....+\frac{1}{30.33}\)

\(\Rightarrow B=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+.....+\frac{1}{30}-\frac{1}{33}\right)\)

\(\Rightarrow B=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\Rightarrow B=\frac{1}{3}.\frac{10}{33}\Rightarrow B=\frac{10}{99}\)

14 tháng 8 2016

dễ mà bạn làm từ câu a nếu ra thì các câu khác cũng dễ thôi

14 tháng 8 2016

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A=1-\frac{1}{2010}\)

\(A=\frac{2009}{2010}\)

a: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{47}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)

b: \(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)

\(=2\cdot\dfrac{1004}{2010}=\dfrac{2008}{2010}=\dfrac{1004}{1005}\)

c: \(S=\dfrac{1}{3\cdot6}+\dfrac{1}{6\cdot9}+...+\dfrac{1}{30\cdot33}\)

\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)

\(a,\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\frac{11}{15}x=\frac{2}{5}\)

\(x=\frac{6}{11}\)

b,\(\left(2x-3\right).\left(6-2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\6-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)

Vậy

a: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}=\dfrac{2-10+3}{15}=\dfrac{-5}{15}=\dfrac{-1}{3}\)

b: \(=\left(6+\dfrac{1}{8}-\dfrac{1}{2}\right)\cdot4=\dfrac{48+1-4}{8}\cdot4=\dfrac{45}{2}\)

c: \(=\dfrac{1}{4}\cdot4-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)

d: \(F=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2008\cdot2010}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)

\(=2\cdot\dfrac{1004}{2010}=\dfrac{1004}{1005}\)

10 tháng 5 2016

\(K=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(K=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(K=2\times\frac{502}{1005}\)

\(K=\frac{1004}{1005}\)

\(F=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)

\(3F=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\)

\(3F=\frac{1}{3}-\frac{1}{33}\)

\(F=\frac{10}{33}:3\)

\(F=\frac{10}{99}\)

\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(I=1-\frac{1}{2010}\)

\(I=\frac{2009}{2010}\)