K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8

6B = 1 x 3 x 6 + 3 x 5 x 6 + 5 x 7 x 6 + ... + 2023 x 2025 x 6

6B = 1 x 3 x [5 - (- 1)] + 3 x 5 x (7 - 1) + ... + 2023 x 2025 x (2027 - 2021)

6B = 1 x 3 x 5 + 1 x 3 x 1 + 3 x 5 x 7 - 3 x 5 x 1 + ... + 2023 x 2025 x 2027 - 2023 x 2025 x 2021

6B = 1 x 3 x 1 + 2023 x 2025 x 2027

6B = 8303757528

B = 1383959588

16 tháng 10 2015

A=1x3 +3x5 +5x7 +....+99x101

6A=1x3x(5+1) + 3x5x(7-1) +5x7x(9-3) +...+ 99x101x(103-97)

6A=3+ 1x3x5 +3x5x7-1x3x5 + 5x7x9 -3x5x7 +....+99x101x103 - 97x99x101

6A=3+99x101x103=1019703

16 tháng 10 2015

B=1x3+3x5+5x7+7x9+...+95x97+97x99

= 1.(1+2)+3.(3+2)+5.(5+2)+....+95.(95+2)+97.(97+2)

= 12+1.2+32+3.2 +52+5.2+...+952+95.2+ 972+97.2

= (12+32 +52+...+952+ 972)+(1.2+3.2 +5.2+...+95.2+97.2)

= (12+32 +52+...+952+ 972)+ 2.(1+3 +5+...+95+97)

Đặt : A = 12+32 +52+...+952+ 97

C =1+3 +5+...+95+97  

    tính A và C (tìm câu hỏi tương tự hình như anh thấy họ làm rồi đấy) sau đó thay vào tính B 

1 tháng 4 2019

\(E=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)

\(\Rightarrow E=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\) (đặt  2  làm nhân tử chung để ta có các số hạng trong ngoặc có hiệu 2 số ở mẫu = tử)

\(\Rightarrow E=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow E=2.\left(1-\frac{1}{99}\right)\)

\(\Rightarrow E=2.\frac{98}{99}\)

\(\Rightarrow E=\frac{196}{99}\)

*Không biết có đúng ko :)

1 tháng 4 2019

k roy nha

14 tháng 3 2022

6B=1.3.(5+1)+3.5.(7-1)+...+19.21(23-17)

6B=1.3.5+1.3+3.5.7-1.3.5+...+19.21.23-17.19.21

6B=3+19.21.23

6B=9180

 B=9180/6

   B=1530

tick nhé ko tick mai đến lớp tao phang

14 tháng 3 2022

lm ah vũ

 

18 tháng 8 2017

= 1 - 1/3 + 1/3 .... - 1/31

= 1 - 1/31 = 30/31

3 tháng 8 2018

tại sao lại ra vậy

2 tháng 1 2018

Ta có \(6B=1\times3\times6+3\times5\times6+...+97\times99\times6\)

\(=1\times3\times\left(5+1\right)+3\times5\times\left(7-1\right)+5\times7\times\left(9-3\right)+...+97\times99\times\left(101-95\right)\)

\(=1\times3\times5+1.3+3\times5\times7-3\times5\times1+...-97\times99\times95\)

\(=97\times99\times101+3\)

\(\Rightarrow B=\frac{97\times99\times101+3}{6}=161651\)

24 tháng 9 2019

6B=1x3x6+3x5x6+5x7x6+.....+97x99x6

6B=1x3x(5+1)+3x5x(7-1)+....+97x99x(102-95)

6B=1x3x5+1x3+3x5x7-3x5+....+97x99x101-95x97x99

6B=1x3x97x99x101

6B=969906

=>B=161651

1 tháng 2 2020

\(S=\frac{4}{1\times3}+\frac{16}{3\times5}+\frac{36}{5\times7}+...+\frac{2500}{49\times51}\)

\(=\frac{1\times3+1}{1\times3}+\frac{3\times5+1}{3\times5}+\frac{5\times7+1}{5\times7}+...+\frac{49\times51+1}{49\times51}\)

\(=\frac{1\times3}{1\times3}+\frac{1}{1\times3}+\frac{3\times5}{3\times5}+\frac{1}{3\times5}+\frac{5\times7}{5\times7}+\frac{1}{5\times7}+...+\frac{49\times51}{49\times51}+\frac{1}{49\times51}\)

\(=1+\frac{1}{1\times3}+1+\frac{1}{3\times5}+1+\frac{1}{5\times7}+...+\frac{1}{49\times51}\) (  Có : \(\left(51-3\right)\div2+1=25\)chữ số 1 )

\(=25+\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{49\times51}\)

\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}\right)+\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\times\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}\times\left(\frac{1}{49}-\frac{1}{51}\right)\)

\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=25+\frac{1}{2}\times\left(1-\frac{1}{51}\right)\)

\(=25+\frac{1}{2}\times\frac{50}{51}\)

\(=25+\frac{25}{51}\)

\(=\frac{1300}{51}\)

1 tháng 2 2020

\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+...+\frac{2500}{49.51}\)

\(=\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+...+\frac{2500}{2499}\)

\(=1+\frac{1}{3}+1+\frac{1}{15}+1+\frac{1}{35}+...+1+\frac{1}{2499}\)

\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2500}\right)\)

\(=25+\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\right)\)

Đặt \(A=\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(=1-\frac{1}{51}=\frac{50}{51}\)

\(\Rightarrow S=25+\frac{50}{51}=\frac{1325}{51}\)

Vậy S=\(\frac{1325}{51}\)

6 tháng 7 2017

Đặt \(S=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{3}{49\cdot51}\)

\(S=\frac{3}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)

\(S=\frac{3}{2}\cdot\left(1-\frac{1}{51}\right)\)

\(\Rightarrow S=\frac{3}{2}\cdot\frac{50}{51}=\frac{3\cdot50}{2\cdot51}=\frac{150}{102}=\frac{25}{17}\)