Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{2017}+1\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2018}{2017}\)
\(=\frac{2018}{2}=1009\)
2,
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2018}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2017}{2018}\)
\(=\frac{-1\cdot2017}{2018}=\frac{-2017}{2018}\)
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
( -1/7 + 2/7 - 5/11 ) - ( 1/4 - 5/7 )
= ( 1/7 - 5/11 ) - ( 1/4 - 5/7 )
= 1/7 - 5/11 - 1/4 + 5/7
= 6/7 - 5/11 - 1/4
= 47/308
\(a,x:\left(-\frac{15}{28}\right)=\frac{21}{35}\)
\(x=\frac{21}{35}\times\left(-\frac{15}{28}\right)\)
\(x=-\frac{9}{28}\)
\(b,x-\frac{1}{42}=-\frac{6}{7}\times\frac{5}{7}\)
\(x-\frac{1}{42}=-\frac{30}{49}\)
\(x=-\frac{30}{49}+\frac{1}{42}\)
\(x=-\frac{173}{294}\)
\(c,\left(x-\frac{3}{4}\right):\frac{7}{5}=-\frac{1}{4}\)
\(x-\frac{3}{4}=-\frac{1}{4}\times\frac{7}{5}\)
\(x-\frac{3}{4}=-\frac{7}{20}\)
\(x=-\frac{7}{20}+\frac{3}{4}\)
\(x=\frac{2}{5}\)
a)x:-15/28=21/35
x=21/35.-15/28
x=-9/28
b)x-1/42= -6/7.5/7
x-1/42= -6/7.5/7
x-1/42=-30/49
x=-30/49+1/42
x=-173/294
c)(x-3/4):7/5=-1/4
x-3/4=-1/4.7/5
x-3/4=-7/20
x=-7/20+3/4
x=2/5
có gì sai xin tha thứ giùm nha!
hi hi!!!
=\(\frac{3\left(\frac{1}{1}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{2}{4}+\frac{2}{6}+\frac{2}{8}}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)
=\(\frac{3}{5}+\frac{2\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)=\(\frac{3}{5}+\frac{2}{5}=\frac{5}{5}=1\)
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)
a) S=1+2+22+...+22017
=> 2S=2.(1+2+22+...+22017)
=>2S=2+22+23+...+22018
=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )
=> S =22018-1
thật sự mị ko biết
B=1,59(285714)
HOK TỐT