K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

Đặt P = ... ( biểu thức đề bài ) 

Nhận xét: Với \(k\inℕ^∗\) ta có: 

\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)

\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)

23 tháng 7 2017

\(=\frac{1}{2}+-\frac{1}{3}+\frac{1}{4}+\frac{1}{-5}+\frac{1}{6}+-\frac{1}{2}+\frac{1}{3}+\frac{1}{-4}+\frac{1}{5}\)
\(=\left(\frac{1}{2}+-\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{-4}\right)+\left(\frac{1}{-5}+\frac{1}{5}\right)+\frac{1}{6}\)
\(=0+0+0+0+\frac{1}{6}\)
\(=\frac{1}{6}\)

23 tháng 7 2017

\(\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{1}{-5}+\frac{1}{6}+\frac{-1}{2}+\frac{1}{3}+\frac{1}{-4}+\frac{1}{5}\)

\(=\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{-1}{5}+\frac{1}{6}+\frac{-1}{2}+\frac{1}{3}+\frac{-1}{4}+\frac{1}{5}\)

\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\frac{1}{6}\)

\(=0+0+0+0+\frac{1}{6}\)

\(=\frac{1}{6}\)

17 tháng 6 2018

a,Ta có \(\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{1-\frac{2}{3}-\frac{1}{2}}-\frac{\frac{3}{5}-\frac{3}{7}-\frac{3}{11}}{\frac{6}{5}-\frac{6}{7}-\frac{6}{11}}\)

\(=\frac{\frac{1}{2}-\frac{1}{3}-\frac{1}{4}}{2.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)}-\frac{3.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}{6.\left(\frac{1}{5}-\frac{1}{7}-\frac{1}{11}\right)}\)

=\(\frac{1}{2}-\frac{3}{6}=\frac{1}{2}-\frac{1}{2}=0\)

Vậy giá trị biểu thức bằng 0

b, Mình không hiểu cho lắm ạ , nếu ko phiền xin xem lại đầu bài ạ

11 tháng 7 2017

\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\left(-\frac{5}{6}\right)-\frac{-7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)

\(=\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}+\frac{7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)

\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)+\left(\frac{5}{6}-\frac{5}{6}\right)+\frac{7}{8}+\frac{6}{7}\)

\(=\frac{7}{8}+\frac{6}{7}=\frac{49}{56}+\frac{48}{56}=\frac{49+48}{56}=\frac{97}{56}\)

21 tháng 2 2017

\(\frac{1}{1}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}\)

\(=1+\left(\frac{2}{3}+\frac{5}{6}\right)+\left(\frac{3}{4}+\frac{4}{5}\right)\)

\(=1+\frac{3}{2}+\frac{21}{20}\)

\(=\frac{81}{20}\)

tk ủng hộ tớ nha

HQ
Hà Quang Minh
Giáo viên
8 tháng 10 2023

a)

 \(\begin{array}{l}\left( {\frac{{ - 2}}{{ - 5}}:\frac{3}{{ - 4}}} \right).\frac{4}{5} = \left( {\frac{2}{5}.\frac{{ - 4}}{3}} \right).\frac{4}{5}\\ = \frac{{ - 8}}{{15}}.\frac{4}{5} = \frac{{ - 32}}{{75}}\end{array}\)

b)

\(\begin{array}{l}\frac{{ - 3}}{{ - 4}}:\left( {\frac{7}{{ - 5}}.\frac{{ - 3}}{2}} \right) = \frac{3}{4}:\frac{{ - 21}}{{ - 10}}\\ = \frac{3}{4}.\frac{{10}}{{21}} = \frac{{30}}{{84}} = \frac{5}{14}\end{array}\)

c)

 \(\begin{array}{l}\frac{{ - 1}}{9}.\frac{{ - 3}}{5} + \frac{5}{{ - 6}}.\frac{{ - 3}}{5} + \frac{5}{2}.\frac{{ - 3}}{5}.\\ = \frac{{ - 3}}{5}.\left( {\frac{{ - 1}}{9} + \frac{5}{{ - 6}} + \frac{5}{2}} \right)\\ = \frac{{ - 3}}{5}.\left( {\frac{{ - 2}}{{18}} + \frac{{ - 15}}{{18}} + \frac{{45}}{{18}}} \right)\\ = \frac{{ - 3}}{5}.\frac{{28}}{{18}}\\ = \frac{{ - 3}}{5}.\frac{{14}}{9}\\ = \frac{{ - 14}}{{15}}\end{array}\)

a: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{-\dfrac{1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)

\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}\)

\(=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)

b: \(A=158\left(\dfrac{12\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}{4\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}:\dfrac{5\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}{6\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}\right)\cdot\dfrac{50550505}{711711711}\)

\(=158\cdot\left(3\cdot\dfrac{6}{5}\right)\cdot\dfrac{50550505}{711711711}\)

\(\simeq40.39\)