K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

a) \(x^2-2xy-4z^2+y^2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2-\left(2z\right)^2\)

\(\Leftrightarrow\left[\left(x-y\right)+2z\right]\left[\left(x-y\right)-2z\right]\)

\(\Leftrightarrow\left(x-y+2z\right)\left(x-y-2z\right)\)

Tại x=6, y=-4, z=45

\(\left[6-\left(-4\right)+2.45\right]\left[6-\left(-4\right)-2.45\right]=100.\left(-80\right)=-8000\)

b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(\Leftrightarrow3\left(x^2+7x-3x-21\right)+\left(x^2-4x+4\right)+48\)
\(\Leftrightarrow3x^2+21x-9x-63+x^2-4x+4+48\)

\(\Leftrightarrow4x^2+8x-11\)

Tại x=0,5 ta có:

\(4.\left(0,5\right)^2+8.0,5-11=-6\)

a)Đặt \(A=x^2-2xy-4z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)

\(=\left(x-y\right)^2-\left(2z\right)^2\)

\(=\left(x-y-2z\right)\left(x-y+2z\right)\)

Thay \(x=6;y=-4;z=45\) vào A, ta có:

\(A=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]\)

\(=100\cdot\left(-80\right)\)

\(=-8000\)

Vậy \(A=-8000\)

b) Đặt \(B=3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)

\(=3\left(x^2+7x-3x-21\right)+x^2-4x+4+48\)

\(=3x^2+12x-63+x^2-4x+52\)

\(=4x^2+8x-11\)

Thay \(x=0,5\) vào B, ta có:

\(B=4\cdot\left(0,5\right)^2+8\cdot0,5-11\)

\(=1\cdot4-11\)

\(=-6\)

Vậy \(B=-6\)

4 tháng 7 2021

a)\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)

Vậy g/t P không phụ thuộc vào biến.

b)\(Q=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)=-6x^2-2+6x^2-6=-8\)

Vậy g/t Q không phụ thuộc vào biến.

b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)

\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)

\(=-2\left(3x^2+1\right)+6\left(x^2-1\right)\)

\(=-6x^2-2+6x^2-6\)

=-8

23 tháng 8 2019

\(A=x^2-2xy-4z^2+y^2\)

\(=\left(x-y\right)^2-\left(2z\right)^2\)

\(=\left(x-y+2z\right)\left(x-y-2z\right)\)

\(=\left(6+4+45\right)\left(6+4-45\right)\)

\(=-1925\)

`@` `\text {Ans}`

`\downarrow`

`P(x)+Q(x)-R(x)`

`= 5x^2 + 5x - 4 +2x^2 - 3x + 1 - (4x^2 - x + 3)`

`= 5x^2 + 5x - 4 + 2x^2 - 3x + 1 - 4x^2 + x - 3`

`= (5x^2 + 2x^2 - 4x^2) + (5x - 3x + x) + (-4 + 1 - 3)`

`= 3x^2 + 3x - 6`

Thay `x=-1/2`

`3*(-1/2)^2 + 3*(-1/2) - 6`

`= 3*1/4 - 3/2 - 6`

`= 3/4 - 3/2 - 6`

`= -3/4 - 6 = -27/4`

Vậy, khi `x=-1/2` thì GTr của đa thức là `-27/4`

P(x)+Q(x)-R(x)

=5x^2+5x-4+2x^2-3x+1-4x^2+x-3

=2x^2+3x-6(1)

Khi x=-1/2 thì (1) sẽ là 2*1/4+3*(-1/2)-6=1/2-3/2-6=-7

24 tháng 6 2023

1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)

\(A=5x^3-15x+7x^2-5x^3-7x^2\)

\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)

\(A=-15x\)

Thay \(x=-5\) vào A ta được:

\(-15\cdot-5=75\)

Vậy: ....

2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)

\(B=x^3-3x+7x^2-5x^3-7x^2\)

\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)

\(B=-4x^3-3x\)

Thay \(x=10,y=-1\) vào B ta được:

\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)

Vậy: ....

24 tháng 6 2023

B =... có biến y đâu mà thay vô như thật vậy:v

1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8

Khi x=201 thì A=10*201+8=2018

2: B=4x^2+20x+25-4x^2+12=20x+37

Khi x=1/20 thì B=1+37=38

7 tháng 7 2023

1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)

\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)

\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)

\(A=4\left(4x+2\right)-6x\)

\(A=16x+8-6x\)

\(A=10x+8\)

Thay \(x=201\) vào A ta có:

\(A=10\cdot201+8=2010+8=2018\)

Vậy: ....

2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)

\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)

\(B=4x^2+20x+25-4x^2+36\)

\(B=20x+61\)

Thay \(x=\dfrac{1}{20}\) vào B ta có:

\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)

Vậy: ...

NV
13 tháng 9 2021

Đặt \(g\left(x\right)=f\left(x\right)-x-1\Rightarrow g\left(2\right)=g\left(3\right)=g\left(4\right)=0\)

\(\Rightarrow g\left(x\right)\) có 3 nghiệm 2;3;4

\(\Rightarrow g\left(x\right)=a\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

\(\Rightarrow f\left(x\right)=g\left(x\right)+x+1=a\left(x-2\right)\left(x-3\right)\left(x-4\right)+x+1\)

\(f\left(5\right)=10\Rightarrow a\left(5-2\right)\left(5-3\right)\left(5-4\right)+5+1=10\)

\(\Rightarrow a=\dfrac{2}{3}\)

\(\Rightarrow f\left(x\right)=\dfrac{2}{3}\left(x-2\right)\left(x-3\right)\left(x-4\right)+x+1\)

\(\Rightarrow f\left(6\right)=\dfrac{2}{3}.4.3.2+6+1=...\)