K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

\(\text{A}=\left(1\times2\right)^{-1}+\left(2\times3\right)^{-1}+(3\times4)^{-1}+...+\left(9\times10\right)^{-1}\)

\(\text{A}=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)

\(\text{A}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\text{A}=1-\frac{1}{10}=\frac{9}{10}\).

16 tháng 1 2017

Bài 1:

\(A=1\cdot2+2\cdot3+...+n\left(n+1\right)\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(3A=n\left(n+1\right)\left(n+2\right)\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bài 2:

\(B=1^2+2^2+...+n^2\)

\(B=1\left(2-1\right)+2\left(3-1\right)+...+n\left[\left(n+1\right)-1\right]\)

\(B=\left[1\cdot2+2\cdot3+...+n\left(n+1\right)\right]-\left(1+2+...+n\right)\)

\(B=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)

\(B=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

4 tháng 3 2018

\(A=\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)\(A=\frac{1}{2}\left(\frac{1\cdot3+1}{1\cdot3}\right)\left(\frac{2\cdot4+1}{2\cdot4}\right)...\left(\frac{2015\cdot2017+1}{2015\cdot2017}\right)\)

\(A=\frac{1^2}{2}\cdot\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\cdot\cdot\frac{2016^2}{2015\cdot2017}\)

\(A=\frac{1^2\cdot2^2\cdot3^2\cdot\cdot\cdot2016^2}{2\cdot1\cdot3\cdot2\cdot4\cdot\cdot\cdot2015\cdot2017}\)

\(A=\frac{2016}{2017}\)

16 tháng 3 2018

\(M=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(M=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)

\(M=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(M=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)