K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

Đặt A=1+a+a^2+a^3+...+a^n

a*A=a+a^2+a^3+a^4+...+an+1

a*A+1=1+a+a^2+a^3+...+a^n+an+1=A+an+1

a*A-A=an+1-1

(a-1)A=an+1-1

A=(an+1-1)/(a-1)

 

25 tháng 8 2015

bài này mình làm được nhưng mà dài vậy sao làm nổi 

24 tháng 7 2018

Các bạn giúp mn với ^^ mn k cho

24 tháng 7 2018

Các bạn giúp mn với ^^ mn k cho

26 tháng 5 2016

Bài làm:

Bài 1

a) \(\left(x-\frac{1}{2}\right)^2=0\) 

 \(\rightarrow\left(x-\frac{1}{2}\right)^2=0^2\)

 \(\rightarrow x-\frac{1}{2}=0\) 

 \(\Rightarrow x=\frac{1}{2}\)

Bài 2

a) \(25^3\div5^2=\left(5^2\right)^3\div5^2=5^6\div5^2=5^4\)

b) \(\left(\frac{3}{7}\right)^{21}\div\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}\div\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}\div\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)

c) \(3-\left(\frac{-6}{7}\right)^0+\left(\frac{1}{2}\right)^2\div2=3-1+\frac{1}{4}\times\frac{1}{2}=2+\frac{1}{8}=\frac{17}{8}\)

Bài 3

a) \(9\times3^3\times\frac{1}{81}\times3^2=3^2\times3^3\times\frac{1}{3^4}\times3^2=3^3\)

b) \(4\times2^5\div\left(2^3\times\frac{1}{16}\right)=2^2\times2^5\div\left(2^3\times\frac{1}{2^4}\right)=2^7\div\frac{1}{2}=2^6\)

c) \(3^2\times2^5\times\left(\frac{2}{3}\right)^2=3^2\times2^5\times\frac{2^2}{3^2}=3^2\times\frac{2^7}{3^2}=2^7\)

d) \(\left(\frac{1}{3}\right)^2\times\frac{1}{3}\times9^2=\left(\frac{1}{3}\right)^3\times3^4=\frac{1}{3^3}\times3^4=3^1\)

26 tháng 5 2016

Các bạn giải từng bước ra cho mình nhé, cảm ơn các bạn

a: \(\Leftrightarrow\dfrac{1}{3}A=\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{n+1}}\)

\(\Leftrightarrow-\dfrac{2}{3}A=\dfrac{1}{3^{n+1}}-\dfrac{1}{3}\)

hay \(A=\left(\dfrac{1}{3^{n+1}}-\dfrac{1}{3}\right):\dfrac{-2}{3}=\dfrac{1-3^n}{3^{n+1}}\cdot\dfrac{3}{-2}=\dfrac{3^n-1}{3^n\cdot2}\)

b: \(\dfrac{1}{3}B=\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2009}}\)

\(\Leftrightarrow B\cdot\dfrac{-2}{3}=\dfrac{1}{3^{2009}}-\dfrac{1}{3}=\dfrac{1-3^{2008}}{3^{2009}}\)

\(\Leftrightarrow B=\dfrac{3^{2008}-1}{3^{2009}}:\dfrac{2}{3}=\dfrac{3^{2008}-1}{2\cdot3^{2008}}\)