Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{1999}\right)}\)=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{1001.1002.1003....2999}{1.2.3...1999}}\)
=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}}\)
=> \(C=\frac{2000.2001.2002....2999}{1.2.3...1000}.\frac{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}=1\)
Đáp số: C=1
(1-1/3)x(1-1/5)x(1-1/7)x(1-1/9)x(1-1/2)x(1-1/4)x(1-1/6)x(1-1/8)x(1-1/10)
=2/3x4/5x6/7x8/9x1/2x3/4x5/6x7/8x9/10
=2x4x6x8x1x3x5x7x9 /3x5x7x9x2x4x6x8x10
=1/10
\(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{5}\right).\left(1-\frac{1}{7}\right)...\left(1-\frac{1}{2}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{120}\right)\)
\(=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{119}{120}=\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{118}{119}\right).\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{119}{120}\right)\)
\(=\frac{\left(2.4.6...118\right).\left(1.3.5...119\right)}{\left(3.5.7...119\right).\left(2.4.6...120\right)}=\frac{1}{120}\).
Đáp số: \(\frac{1}{120}\).
a) \(\left(-\frac{1}{4}\right)^0=1\)
b) \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)
c) \(\left(\frac{4}{5}\right)^{-2}=\frac{25}{16}\)
d) \(\left(0,5\right)^{-3}=8\)
e) \(\left(-1\frac{1}{3}\right)^4=\left(-\frac{4}{3}\right)^4=\frac{256}{81}\)
a, \(\left(\frac{-1}{4}\right)^0\) = 1
Bất kỳ số nguyên nào nếu có mũ bằng 0 đều bằng 1
b, \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)