Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
\(\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{5}\times\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{6}\)
\(=\frac{3+6-2}{12}=\frac{7}{12}\)
\(\frac{1}{2}\)* \(\frac{1}{2}\)+ \(\frac{1}{2}\)*\(\frac{1}{3}\)+ \(\frac{1}{3}\)* \(\frac{1}{4}\)+ \(\frac{1}{4}\)* \(\frac{1}{5}\)+ \(\frac{1}{5}\)* \(\frac{1}{6}\)
=\(\frac{1}{2}\)* \(\frac{1}{6}\)= \(\frac{1}{12}\)
( Những phân số khác nhau bạn loại đi nhé tại mình ko làm được bước đó trên này bạn thông cảm nhé ! )
\(\frac{1991.1992.1993.1994.995}{1990.1991.1992.1993.997}=\frac{1994.995}{1990.997}=\frac{2.1}{2.1}=\frac{2}{2}=1\)
1.
Xét TS : đặt 2 ra ngoài ta đc 2 ( 1/3 - 1/13 + 1/4391 )
Xét MS : đặt 4 ra ngoài ta đc 4 ( 1/3 - 1/13 + 1/4391 )
Rút gọn ( 1/3 - 1/13 + 1/4391 ) ở cả TS và MS ta đc kết quả là 2/4 hay 1/2
a,Đặt \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)
\(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)
\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{300}\)
b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)
c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\) (dấu . là dấu nhân)
\(\frac{1}{5}\cdot\frac{1}{7}+\frac{4}{5}+\frac{1}{5}\cdot\frac{12}{7}-1-\frac{1}{5}\cdot\frac{6}{7}\)
\(=\frac{1}{5}\cdot\left(\frac{1}{7}+\frac{12}{7}-\frac{6}{7}\right)-\left(1-\frac{4}{5}\right)\)
\(=\frac{1}{5}.1-\frac{1}{5}\)
\(=\frac{1}{5}-\frac{1}{5}=0\)
b = 1
a đg nghĩ
@32526313:
Giải bài đầy đủ ra đi bạn =))
Nói đ/a ai chả nói được (: