Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài : A^=B^+10*
B^=C^+10*
C^=D^+10*
<=> A^- 10* =C^ +10*
B^- 10* = D^ + 10*
Mà A^+B^+C^+D^=360*
=> A^ - 10*+C^ +10* <=> B^ (+10*-10*)+D^+10*+10*
=>2(A^-10*+C^+10*)=360*
=>A^-10*+C^+10*=180*
Ta có : A^-10*=C^+10* =>A^=C^+10*+10*
=> A^=(180*+10*+10*):2=100*
=>C^=180*-100*=80*
=>B^=80*+10*=90*
=>D^=360*-100*-90*-80*=90*
Vậy ....
a) Theo bài ra, ta có:
\(\widehat{A}\):\(\widehat{B}\): \(\widehat{C}\) : \(\widehat{D}\) = 1 : 2 : 3 : 4 => \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\widehat{\frac{D}{4}}\) và \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=180^0\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{\widehat{A}}{1}=\widehat{\frac{B}{2}}=\frac{\widehat{C}}{3}=\frac{\widehat{D}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360^0}{10}=36^0\)
=> \(\frac{\widehat{A}}{1}=36^0\) => \(\widehat{A}=36^0\)
\(\widehat{\frac{B}{2}}=36^0\)=> \(\widehat{B}=72^0\)
\(\widehat{\frac{C}{3}}=36^0\) => \(\widehat{C}=108^0\)
\(\widehat{\frac{D}{4}}=36^0\) => \(\widehat{D}=144^0\)
Vậy ...
b) Xét tứ giác ABCD có góc A + góc B + góc C + góc D = 3600
hay góc A + (góc A + 100) + góc C + (góc C + 100) = 3600
=> 2.(góc A + góc C) = 3400
=> góc A + góc C = 1700 => góc B + góc D = 3600 - 1700 = 1900
Ta có: góc B = góc A + 100 (1)
góc C = góc B + 100 (2)
góc D = góc C + 100 (3)
Từ (1) và (2) cộng vế cho vế :
góc B + góc C = góc A + 100 + góc B + 100
=> góc C = góc A + 200 => góc C - A = 200
Mà góc A + góc C = 1700
=> 2. góc C = 1900 => góc C = 950
=> góc A = 950 - 200 = 750
Từ (2) và (3) cộng vế cho vế :
góc C + góc D = góc B + 100 + góc C + 100
=> góc D = góc B + 200 => góc D - góc B = 200
Mà góc D + góc B = 1900
=> 2. góc D = 2100 => góc D = 1050
=> góc B = 1050 - 200 = 850
c) Xét tứ giác ABCD góc A + góc B + góc C + góc D = 3600
=> góc A + góc B = 3600 - góc C - góc D = 3600 - 600 - 800 = 2200
Mà góc A - góc B = 100
=> 2. góc A = 2300 => góc A = 1150
=> góc B = 115 - 100 = 1050
Vậy ...
ứ giác ABCD có :
ˆB=ˆA+10B^=A^+10(1)(1)
ˆC=ˆB+10C^=B^+10
Thay (1) vào ( 2) ⇒ˆC−10=ˆA+10⇒ˆC=200+ˆA⇒C^−10=A^+10⇒C^=200+A^(2)
ˆD=ˆC+10=200+A+10=300+AD^=C^+10=200+A+10=300+A(3)
(1),(2),(3) =>A+B+C+D=360=>ˆA+10+ˆA+20+ˆA+30+ˆA=360=>4ˆA+60=360=>ˆA=750A+B+C+D=360=>A^+10+A^+20+A^+30+A^=360=>4A^+60=360=>A^=750
=>ˆB=85.;ˆC=950;ˆD=1050=>B^=85.;C^=950;D^=1050.
Ta có :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\)
\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017.\frac{1}{10}\)
\(\Rightarrow\frac{2017}{a+b}+\frac{2017}{b+c}+\frac{2017}{c+a}=201,7\)
Mà \(2017=a+b+c\)nên :
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=201,7\)
\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{b}{a+c}\right)=201,7\)
\(3+\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=201,7\)
\(\Leftrightarrow M=\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=201,7-3\)
\(\Leftrightarrow M=198,7\)
Vậy ...
\(a^2-b^2-c^2-2bc-2ac-2ab\)
\(=a^2-b^2-c^2-2\left(bc+ac+bc\right)\)
\(=\left(a-b-c\right)^2=10^2=100\)
Sửa đề tí nha
\(a^3+b^3-c^3+3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)
\(=\left(a+b-c\right)^3+3c\left(a+b\right)\left(a+b-c\right)-3ab\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2+b^2+c^2-ab+bc+ca\right)=0\)
\(\Leftrightarrow a+b-c=0\)
\(\Leftrightarrow a+b=c\)
\(P=\left(\frac{a+b}{c}\right)^{10}=1^{10}=1\)