K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
15 tháng 4 2019

a) + \(\frac{2}{n\left(n+2\right)}=\frac{\left(n+2\right)}{n\left(n+2\right)}-\frac{n}{n\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)

Do đó :

+ \(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{2017\cdot2019}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(A=1-\frac{1}{2019}=\frac{2018}{2019}\)

3 tháng 5 2021

A = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2017. 2019

= ( 1 - 1/3 ) + ( 1/3 - 1/5 ) + ... + (1/2017 - 1/2019 )

= 1 - 1/2019

= 2018/2019

3 tháng 5 2021

S = 1/31 + 1/32 +...+ 1/60

 Ta có các phân số : 1/31, 1/32, ..., 1/59 đều lớn hơn 1/60

 Nên S > 1/60 + 1/60 + 1/60 +...+ 1/60 ( có tất cả 30 phân số )

= 30/60 = 1/2

Vì 1/2 < 4/5 nên S <4/5

Vậy, chứng tỏ S < 4/5

Chúc bạn học tốt !

11 tháng 5 2022

ơi

11 tháng 5 2022

9 tháng 5 2018

S=1/3-1/5+1/5-1/7+........+1/2017-1/2019

S=1/3-1/2019

S=872/2019

9 tháng 5 2018

nhầm. ĐS là 672/2019=224/673

Giải: 1) A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/2017.2019     A=1/2.(2/1.3+2/3.5+2.5.7+2/7.9+...+2/2017.2019)     A=1/2.(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/2017-1/2019)     A=1/2.(1/1-1/2019)     A=1/2.2018/2019     A=1009/2019 Chúc bạn học tốt!
30 tháng 7 2021

bn ơi viết đpá án hơi khó nhìn xíu nhalolang

1 tháng 6 2020

\(2.S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)

\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2019-2017}{2017.2019}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}=\frac{2018}{2019}\)

=> \(S=\frac{1009}{2019}\)

Tính: S= 1/1.3 + 1/3.5 +1/5.7 + 1009/2019 .....+ 1/2017.2019

Trả lời:

1009/2019

Cố gắng lên (tự nhủ) 

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(2S=1-\frac{1}{2019}=\frac{2018}{2019}\)

\(S=\frac{1009}{2019}\)

19 tháng 4 2023

Hi

16 tháng 7 2018

Bài 1a

B=4/1.3 + 4/3.5 + 4/5.7+...+4/2017.2019

B=4.2/(1.3).2 + 4.2/(3.5).2 + 4.2/(5.7).2+....+4.2/(2017.2019).2

B=2.( 2/1.3 + 2/3.5 + 2/5.7 +...+ 2/2017.2019 )

B=2.(1-1/3+1/3-1/5+1/5-1/7+....+1/2017-1/2019)

B=2.(1-1/2019)

B=2.(2019/2019-1/2019)

B=2.2018/2019

B=4036/2019

16 tháng 7 2018

cảm ơn

10 tháng 5 2022

\(S=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)

\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)

\(=\dfrac{1}{1}-\dfrac{1}{11}=\dfrac{11}{11}-\dfrac{1}{11}=\dfrac{10}{11}\)