K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 1 2021

Lời giải:

Nếu $x=0$ thì tổng trên có giá trị bằng $15$

Nếu $x\neq 0$:

$T=1+(x+1)^2+....+(x+1)^{15}$

$T(x+1)=(x+1)+(x+1)^3+...+(x+1)^{16}$

$\Rightarrow T(x+1)-T=(x+1)^{16}+(x+1)-1-(x+1)^2$

$\Leftrightarrow Tx=(x+1)^{16}+x-(x+1)^2$

$T=\frac{(x+1)^{16}-(x+1)^2}{x}+1$

AH
Akai Haruma
Giáo viên
22 tháng 2 2023

Lời giải:

a. \(\lim\limits_{x\to 1+}(x^3+x+1)=3>0\)

\(\lim\limits_{x\to 1+}(x-1)=0\) và $x-1>0$ khi $x>1$

\(\Rightarrow \lim\limits_{x\to 1+}\frac{x^3+x+1}{x-1}=+\infty\)

b.

 \(\lim\limits_{x\to -1+}(3x+2)=-1<0\)

\(\lim\limits_{x\to -1+}(x+1)=0\) và $x+1>0$ khi $x>-1$

\(\Rightarrow \lim\limits_{x\to -1+}\frac{3x+2}{x+1}=-\infty\)

c.

\(\lim\limits_{x\to 2-}(x-15)=-17<0\)

\(\lim\limits_{x\to 2-}(x-2)=0\) và $x-2<0$ khi $x<2$

\(\Rightarrow \lim\limits_{x\to 2-}\frac{x-15}{x-2}=+\infty\)

 

 

 

Câu 2:

\(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2u_1+4d=20\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u_1+4d-2u_1-5d=20-17\\2u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-d=3\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=-3\\2u_1=17-5d=17+5\cdot3=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1=16\\d=-3\end{matrix}\right.\)

Câu 1:

Để a,b,c lập thành cấp số cộng thì

\(\left[{}\begin{matrix}a+c=2b\\a+b=2c\\b+c=2a\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x+1+x^2-1=2\cdot\left(3x-2\right)\\x+1+3x-2=2\left(x^2-1\right)\\x^2-1+3x-2=2\left(x+1\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2+x-6x+4=0\\2x^2-2=4x-1\\x^2+3x-3-2x-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2-5x+4=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left(x-1\right)\left(x-4\right)=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left\{1;4\right\}\\x\in\left\{\dfrac{2+\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right\}\\x\in\left\{\dfrac{-1+\sqrt{21}}{2};\dfrac{-1-\sqrt{21}}{2}\right\}\end{matrix}\right.\)

17 tháng 1 2021

\(\Rightarrow1+a+b=0\Leftrightarrow b=-a-1\)

\(\lim\limits_{x\rightarrow1}\dfrac{x^2+ax-a-1}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x+1+a\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{x+1+a}{x+1}=\dfrac{1+1+a}{1+1}=\dfrac{1}{2}\)

\(\Rightarrow a=-1\Rightarrow b=0\)

16 tháng 12 2023

Xét dãy \(\left(u_n\right)\) là cấp số nhân có \(\left\{{}\begin{matrix}u_1=x^2\\q=-x\end{matrix}\right.\)

\(S=x^2-x^3+x^4-x^5+...+\left(-1\right)^nx^n+...=\dfrac{x^2}{1-\left(-x\right)}=\dfrac{x^2}{x+1}\)

12 tháng 3 2022

0

13 tháng 3 2022

sai rồi bạn ơi

NV
8 tháng 1

\(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}\) hữu hạn \(\Rightarrow f\left(3\right)=80\)

Sử dụng hẳng đẳng thức: \(a-b=\dfrac{a^4-b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{f\left(x\right)-80}{\left[\sqrt[4]{f\left(x\right)+1}+3\right]\left[\sqrt[]{f\left(x\right)+1}+9\right]}}{\left(x-3\right)\left(2x-5\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}.\dfrac{1}{\left[\sqrt[4]{f\left(x\right)+1}+3\right]\left[\sqrt[]{f\left(x\right)+1}+9\right]\left(2x-5\right)}\)

\(=5.\dfrac{1}{\left(\sqrt[4]{80+1}+3\right)\left(\sqrt[]{80+1}+9\right)\left(2.3-5\right)}\)

8 tháng 1

Em đang tích cực học toán để hỏi anh một số dạng, mới đầu năm học em học về tìm tham số để phương trình lượng giác có nghiệm trên khoảng, ..., gần chục dạng cô cho làm mà khó quá, có những câu không làm được, nào em xem lại tờ đó có gì em nhờ anh giúp ạ! 

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân