Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. \(\lim\limits_{x\to 1+}(x^3+x+1)=3>0\)
\(\lim\limits_{x\to 1+}(x-1)=0\) và $x-1>0$ khi $x>1$
\(\Rightarrow \lim\limits_{x\to 1+}\frac{x^3+x+1}{x-1}=+\infty\)
b.
\(\lim\limits_{x\to -1+}(3x+2)=-1<0\)
\(\lim\limits_{x\to -1+}(x+1)=0\) và $x+1>0$ khi $x>-1$
\(\Rightarrow \lim\limits_{x\to -1+}\frac{3x+2}{x+1}=-\infty\)
c.
\(\lim\limits_{x\to 2-}(x-15)=-17<0\)
\(\lim\limits_{x\to 2-}(x-2)=0\) và $x-2<0$ khi $x<2$
\(\Rightarrow \lim\limits_{x\to 2-}\frac{x-15}{x-2}=+\infty\)
Câu 2:
\(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2u_1+4d=20\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u_1+4d-2u_1-5d=20-17\\2u_1+5d=17\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-d=3\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=-3\\2u_1=17-5d=17+5\cdot3=32\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1=16\\d=-3\end{matrix}\right.\)
Câu 1:
Để a,b,c lập thành cấp số cộng thì
\(\left[{}\begin{matrix}a+c=2b\\a+b=2c\\b+c=2a\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x+1+x^2-1=2\cdot\left(3x-2\right)\\x+1+3x-2=2\left(x^2-1\right)\\x^2-1+3x-2=2\left(x+1\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x^2+x-6x+4=0\\2x^2-2=4x-1\\x^2+3x-3-2x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x^2-5x+4=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left(x-1\right)\left(x-4\right)=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left\{1;4\right\}\\x\in\left\{\dfrac{2+\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right\}\\x\in\left\{\dfrac{-1+\sqrt{21}}{2};\dfrac{-1-\sqrt{21}}{2}\right\}\end{matrix}\right.\)
\(\Rightarrow1+a+b=0\Leftrightarrow b=-a-1\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+ax-a-1}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x+1+a\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{x+1+a}{x+1}=\dfrac{1+1+a}{1+1}=\dfrac{1}{2}\)
\(\Rightarrow a=-1\Rightarrow b=0\)
\(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}\) hữu hạn \(\Rightarrow f\left(3\right)=80\)
Sử dụng hẳng đẳng thức: \(a-b=\dfrac{a^4-b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{f\left(x\right)-80}{\left[\sqrt[4]{f\left(x\right)+1}+3\right]\left[\sqrt[]{f\left(x\right)+1}+9\right]}}{\left(x-3\right)\left(2x-5\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}.\dfrac{1}{\left[\sqrt[4]{f\left(x\right)+1}+3\right]\left[\sqrt[]{f\left(x\right)+1}+9\right]\left(2x-5\right)}\)
\(=5.\dfrac{1}{\left(\sqrt[4]{80+1}+3\right)\left(\sqrt[]{80+1}+9\right)\left(2.3-5\right)}\)
Lời giải:
Nếu $x=0$ thì tổng trên có giá trị bằng $15$
Nếu $x\neq 0$:
$T=1+(x+1)^2+....+(x+1)^{15}$
$T(x+1)=(x+1)+(x+1)^3+...+(x+1)^{16}$
$\Rightarrow T(x+1)-T=(x+1)^{16}+(x+1)-1-(x+1)^2$
$\Leftrightarrow Tx=(x+1)^{16}+x-(x+1)^2$
$T=\frac{(x+1)^{16}-(x+1)^2}{x}+1$