Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{-\left(101-100+99-98+...+3-2+1\right)}{101-100+99-98+...+3-2+1}=-1\)
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a: \(100+98+96+...+2-97-95-...-1\)
\(=100+\left(98-97\right)+\left(96-95\right)+...+\left(2-1\right)\)
\(=100+1+...+1\)
\(=100+49=149\)
b: \(1+2-3-4+5+6-7-8+9+10-11-12+...+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+603\)
\(=603+\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=603-4\cdot75=603-300=303\)
a: \(A=\dfrac{5}{7}-\dfrac{2}{7}+\dfrac{8}{11}+\dfrac{3}{11}+\dfrac{1}{2}=\dfrac{3}{7}+\dfrac{1}{2}+1=\dfrac{6+7+14}{14}=\dfrac{27}{14}\)
b: \(B=\dfrac{11}{17}+\dfrac{6}{17}-\dfrac{8}{19}-\dfrac{30}{19}+\dfrac{-3}{4}=1-2-\dfrac{3}{4}=-1-\dfrac{3}{4}=-\dfrac{7}{4}\)
c: \(C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=\dfrac{49}{50}\)
\(S=1+2+2^2+2^3+...+2^{62}+2^{63}\)
\(2S=2\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)
\(2S=2+2^2+2^3+2^4+...+2^{63}+2^{64}\)
\(2S-S=\left(2+2^2+2^3+2^4+...+2^{63}+2^{64}\right)-\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)
\(S=2^{64}-1\)
Bài toán làm theo kiểu 2.S là được nếu là 3x thì sử dụng 3.S. Tương tự như vậy
Ta có: 1 + 2 + 22 + 23 +...+ 262 + 263
\(\Rightarrow\) 2.(1 + 2 + 22 + 23 +...+ 262 + 263) trừ (1 + 2 + 22 + 23 +...+ 262 + 263) = 1 + 2 + 22 + 23 +...+ 262 + 263
= (2 + 22 + 23 + 24 +...+ 263 + 264) trừ (1 + 2 + 22 + 23 +...+ 262 + 263)
(Sử dụng phương pháp chịt tiêu: (là thế này nè)
(2 + 22 + 23 + 24 +...+ 263 + 264) trừ (1 + 2 + 22 + 23 +...+ 262 + 263)
Còn lại 264 trừ 1)
= 264 trừ 1
Vậy S = 264 trừ 1
0 + 1 + 2 + .... + 98 + 99 + 100
= ( 100 + 1 ) + ( 99 + 2 ) + ( 98 + 3 ) + .... + ( 3 + 98 ) + ( 2 + 99 ) + ( 1 + 100 )
= 101 + 101 + 101 + .... + 101 + 101 + 101 ( có 50 số hạng 101 )
= 101 . 50
= 5050