Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhiều thế ưu tiên làm câu 2 trước
a) A = 1 + 3 + 32 + ... + 3100
3A = 3 + 32 + ... + 3101
3A - A = 3101 - 1
2A = 3101 - 1 => A = \(\frac{3^{101}-1}{2}\)
b) B = 1 + 4 + 42 + ... + 4100
4B = 4 + 42 + ... + 4101
4B - B = 4101 - 1
3B = 4101 - 1 => B = \(\frac{4^{101}-1}{3}\)
c) C = 1 + 5 + 52 + ... + 5100
5C = 5 + 52 + ... + 5101
5C - C = 5101 - 1
4C = 5101 - 1 => C = \(\frac{5^{101}-1}{4}\)
d) chả hiểu gì hết
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +....+ 99 - 100
A = (1 - 2) + ( 3- 4) + ....+ (99 - 100)
Xét dãy số 1; 3;...; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: ( 99 - 1): 2 + 1 = 50
A là tổng của 50 nhóm mỗi nhóm cóa giá tri là: 1 - 2 = - 1
A = - 1 \(\times\) 50 = - 50
B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 97 - 98 - 99 + 100
B = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7 + 8) +...+ ( 97 - 98 - 99 + 100)
B = 0 + 0 +...+ 0
B = 0
có:
(1994-1)+1=1994
Tổng là:
1994x(1994+1):2=1989015
Đáp số:1989015
\(10^3.100^2.1000^5\)
=\(10^3.10^5.10^{15}\)
=\(10^{23}\)
b) \(16.64.8^2:\left(4^3.2^5.16\right)\)
=\(2^4.2^6.2^6:\left(2^6.2^5.2^4\right)\)
=\(2^{10}.2^6:\left(2^{11}.2^4\right)\)
=\(2^{16}:2^{15}\)
=2
c) \(\left(20.2^4+12.2^4-48.2^2\right):8^2\)
= \(\left[2^4.\left(20+12\right)-48.2^2\right]:8^2\)
= \(\left[16.32-48.4\right]:64\)
= \(\left[512-192\right]:64\)
= \(320:64\)
= \(5\)
Câu d thì mình chưa hiểu đề bài thì bạn viết lại hộ mình để mình giải cho
a) -1+2-3+4-5+6-....-2015+2016-2017+2018
= (-1+2)+(-3+4)+(-5+6)+.….+(-2015+2016)+(-2017+2018)
= 1+1+1+....+1+1
( Có tất cả 1009 số 1)
= 1009
b)1-2+3-4+5-6+.….+1245-1246+1247-1248
=(1-2)+(3-4)+(5-6)+....+(1245-1246)+(1247-1248)
=-1+(-1)+(-1)+....+(-1)+(-1)
(Có tất cả 624 số (-1))
= -624
Khi xoá hai chữ số tận cùng của một số thì ta giảm số đó đi 100 lần.
Bài này bạn vẽ sơ đồ số cũ và số mới sẽ ra ngay thôi mà.
Ta có: 1993 : (100 - 1) = 20 dư 13 (13 tức là hai chữ số xoá đi)
Số cần tìm là: 20 x 100 + 13 = 2013
Chúc bạn học giỏi!
a) A = 2 + 22 + 23 + ... + 2100
2A = 22 + 23 + 24 + ... + 2101
2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)
A = 2101 - 2
b) B = 1 + 3 + 32 + ... + 3255
3B = 3 + 32 + 33 + ... + 3256
3B - B = (3 + 32 + 33 + ... + 3256) - (1 + 3 + 32 + ... + 3255)
2B = 3256 - 1
B = \(\frac{3^{256}-1}{2}\)
c) C = 1 + 4 + 42 + ... + 4100
4C = 4 + 42 + 43 + ... + 4101
4C - C = (4 + 42 + 43 + ... + 4101) - (1 + 4 + 42 + ... + 4100)
3C = 4101 - 1
C = \(\frac{4^{101}-1}{3}\)
d) D = 1 + 5 + 52 + ... + 51000
5D = 5 + 52 + 53 + ... + 51001
5D - D = (5 + 52 + 53 + ... + 51001) - (1 + 5 + 52 + ... + 51000)
4D = 51001 - 1
D = \(\frac{5^{1001}-1}{4}\)