K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

\(S=1+3+3^2+3^3+...+3^{2014}\)

\(3S=3+3^2+3^3+3^4+...+3^{2015}\)

\(3S-S=\left(3+3^2+3^3+3^4+...+2^{2015}\right)-\left(1+3+3^2+3^3+...+3^{2014}\right)\)

\(2S=3^{2015}-1\)

\(S=\frac{3^{2015}-1}{2}\)

5 tháng 5 2016

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5 (1)

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S < 4/5 (2)

Từ (1) và (2) => 3/5 <S<4/5

5 tháng 5 2016

so sanh 2 vế nha

vế 1 chứng minh S>3/5

ta có:S=1/31+1/32+.......+1/60>10.1/40+10.1/50+10.1/60=1/4+1/5+1/6=37/60>3/5

vậy S>3/5

vế 2 chứng minh S<4/5

ta có:S=1/31+1/32+.....+1/60<10.1/30+10.1/40+10.1/50=1/3+1/4+1/5=47/60<4/5

vậy S<4/5

14 tháng 9 2017

S=2+4+6+...+98+100

S=\(\frac{\left[\left(\frac{100-2}{2}+1\right).\left(100+2\right)\right]}{2}=2550\)

S=1+2+3+4+...+2016+2017

S=\(\frac{\left(2017-1+1\right).\left(2017+1\right)}{2}=2035153\)

14 tháng 9 2017

1.Số lượng số của S= (2017-1)+1=2017 số

tổng=(2016+1).(2016:2)+2017=2 035 153

2.Số lượng số của S=(100-2):2+1=50 số

tổng=(100+2).(50:2)=2 550

30 tháng 3 2016

\(S=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)

\(=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{2016}{2016}-\frac{1}{2016}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}=\frac{1}{2016}\)

30 tháng 3 2016

\(S=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2015}{2016}\)

\(S=\frac{1\cdot2\cdot3\cdot...\cdot2015}{2\cdot3\cdot4\cdot...\cdot2016}\)

\(S=\frac{1}{2016}\)

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

13 tháng 1

\(S=3+5+7+...+2015\\ S=\left[\left(2015-3\right):2+1\right]:2\times\left(2015+3\right)\\ S=\left[2012:2+1\right]:2\times2018\\ S=1016063\)

24 tháng 2 2023

   S    = 1 +  3 + 32 + 33 +...+39

3.S    =       3 + 32 + 33 +....+39+310

3S-S = 310 - 1

2S    =  310 - 1

 S     = \(\dfrac{3^{10}-1}{2}\)      

10 tháng 9 2023

\(A=1+3+3^2+...+3^{50}\)

\(3A=3+3^2+3^3+...+3^{51}\)

\(3A-A=\left(3+3^2+3^3+...+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)\)

\(2A=3^{51}-1\)

\(A=\dfrac{3^{51}-1}{2}\)