K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

A B C H M

( hình hơi xấu :V )

Giả sử tam giác ABC vuông tại A( AB < AC)   có AM là trung tuyến, AH là đường cao

Vì đường cao và đường trung tuyến ứng với cạnh huyền của tam giác tỷ lệ với 12 :13 , do đó đặt AH = 12x,  AM =13 x

Suy ra BM = CM = 13x

Áp dụng định lý Pytago cho \(\Delta AHM\)có:

HM2= AM2 -  AH2 =  (13x)2 - (12x)2 = (25 x)2 

=> HM = 5x 

Do đó HC =  5x + 13x = 18x 

Dễ thấy \(\Delta ABC\)Đồng dạng  \(\Delta HAC\)(g.g)

=> \(\frac{AB}{AC}\)\(\frac{HA}{HC}\)\(\frac{12x}{18x}\)\(\frac{2}{3}\)

=> kl

27 tháng 2 2016

Làm ơn cho tớ hỏi đường cao có phải là đường cao ứng với cạnh huyền không?

4:

a: Gọi độ dài cạnh góc vuông cần tìm là x

Theo đề, ta có: x^2+x^2=a^2

=>2x^2=a^2

=>x^2=a^2/2=2a^2/4

=>\(x=\dfrac{a\sqrt{2}}{2}\)

b:

Độ dài cạnh là;

\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)

5: 

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>13^2=12^2+HB^2

=>HB=5cm

BC=5+16=21cm

ΔAHC vuông tại H

=>AH^2+HC^2=AC^2

=>AC^2=16^2+12^2=400

=>AC=20(cm)

27 tháng 1 2021

6,5 cm nha nb