Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1^2-2^2+3^2-4^2+...+97^2-98^2+99^2-100^2=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(97-98\right)\left(97+98\right)+\left(99-100\right)\left(99+100\right)\)\(=-\left(1+2+3+4+...+97+98+99+100\right)\)
\(=-\left(\frac{101\times100}{2}\right)=-5050\)
S = 1.2.3.4 + 2.3.4.5 + 3.4.5.6+...97.98.99.100
5S = (1.2.3.4+2.3.4.5+3.4.5.6+ ... + 97.98.99.100).5
5S = 1.2.3.4.(5-0) + 2.3.4.5.(6-1)+ 3.4.5.6(7-2)+......+ 97.98.99.100.(101-96)
5S = (1.2.3.4.5 + 2.3.4.5.6 + 3.4.5.6.7 + ....+ 97.98.99.100.101) - (0.1.2.3.4 + 1.2.3.4.5 + 2.3.4.5.6+.....+96.97.98.99.100)
5S = 97.98.99.100.101
S= 97.98.99.100.101/5
S=1901009880
S=1*2*3*4+2*3*4*5+....+97*98*99*100
5S=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5
5S=1.2.3.4.(5-0)+2.3.4.5.(6-1)+...+97.98.99.100.(101-96)
5S=1.2.3.4.5-0.1.2.3.4+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100
5S=(1.2.3.4.5+2.3.4.5.6+...+97.98.99.100.101)-(0.1.2.3.4+1.2.3.4.5+...+96.97.98.99.100)
5S=97.98.99.100.101
S=9505049400:5=1901009880.
Mình không chắc là có đúng không nữa các bạn xem hộ mình với nha!
= (100^2 - 99^2) + (98^2 - 97^2) + ... + (4^2 - 3^2) + (2^2 - 1^2) =
= (100+99)(100-99) + (98+97)(98-97) + ... + (4+3)(4-3) + (2+1)(2-1) =
= (100+99).1 + (98+97).1 + ... + (4+3).1 + (2+1).1 =
= 100 + 99 + 98 + 97 + ... + 4 + 3 + 2 + 1 =
= (100+1) + (99+2) + (98+3) + ... + (51+50) = 101.50 = 5050
(50 cặp dấu ngoặc, tổng trong mỗi cặp dấu ngoặc là 101)
\(\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+...+1^2\right)\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+....+2+1=5050\)
\(\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+...+1^2\right)\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+....+2+1=5050\)
\(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)
\(=\left(100-99\right).\left(100+99\right)+\left(98-97\right).\left(98+97\right)+....+\left(2-1\right).\left(2+1\right)\)
\(=1+2+....+97+98+99+100=\frac{100.\left(100+1\right)}{2}=5050\)
\(B=3\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1=\left(2^8-1\right).....\left(2^{64}+1\right)+1\)
Tiếp tục rút gọn như vậy,ta đc \(B=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1+1=2^{128}\)
Bài 1: Tính nhanh
a) Ta có: \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\left(100+1\right)+\left(99+2\right)+\left(98+3\right)+\left(97+4\right)+...+\left(50+51\right)\)
\(=101\cdot50=5050\)
b) Ta có: \(B=\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=24\cdot\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow4\cdot B=5^{32}-1\)
hay \(B=\frac{5^{32}-1}{4}\)
a)\(T=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
ta có \(2+1=2^2-1\)
\(T=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
\(T=\left(2^4-1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
\(T=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(T=2^{32}-1\)
bạn ơi nơi chổ mấy cái \(\left(2^2-1\right)\left(2^2+1\right)\)là nhân đa thức lại nha
b)
\(U=100^2-99^2+98^2-97^2+...+4^2-3^2+2^2-1^2\)
\(U=-1^2+2^2-3^2+4^2-...-97^2+98^2-99^2+100^2\)
\(U=2^2-1^2+4^2-3^2+...+98^2-97^2+100^2-99^2\)
\(U=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)(dùng hằng đẳng thức sô 3 nha)
\(U=3+7+...+199\)
\(U=1+2+3+\text{4+...+99+100}\)
số số hạng của U là :\(\left(100-1\right):1+1=100\) (số hạng)
tổng số số hạng của U là : \(\frac{\left(100+1\right).100}{2}=5050\)
à bạn coi lại cái đề nha đoạn sau hình như thiếu 2^2 thì phải